

Analysis Results

Lightning Browser

Report Date

2022-07-19 08:53:57

Report Author

Classification Method

OWASP Mobile Top 10 2016

Product Version

3.11.3

Lightning Browser

CONFIDENTIALITY NOTE

This report is intended only for the person(s) or entity to which it is addressed and contains
confidential and privileged information. If you are not the intended recipient, you must not view, use,
copy, disclose, or otherwise disseminate this report or any part of it. Doing so is strictly prohibited,
and may result in legal proceedings. If you received this in error, please notify the sender immediately
and destroy any copies of this information.

2

Lightning Browser

TABLE OF CONTENTS

Project Information 4

Security Level Dynamics 4

Vulnerability Dynamics 4

Scan History 5

About OWASP Mobile Top 10 2016 6

Scan Information 1/1 2022-07-18 09:31:55 8

Scan Statistics 8

Language Statistics 9

Classification by OWASP Mobile Top 10 2016 9

Vulnerability List 11

Detailed Results 19

WAF Configuration Guide 50

Scan Settings 53

Export Settings 54

3

Lightning Browser

PROJECT INFORMATION

Project

Lightning Browser

UUID

ebb0ba76-01cd-4dd8-a89b-ffeec08ced60

Go To Results In DerScanner

Source code

https://play.google.com/store/apps/details?id=acr.browser.barebones&hl=en&gl=US

Security Level Dynamics

The app score is calculated on a scale from 0 to 5. Score is calculated based on the number of
critical and medium level vulnerabilities. The impact of critical vulnerabilities is greater than
that of medium level vulnerabilities, and does not take into account the amount of code. Medium
level vulnerabilities are taken into account based on their frequency and total number of source
code lines.

Vulnerability Dynamics

Vulnerabilities are divided by severity level: critical, medium, low and info.

1. Critical vulnerabilities are likely to compromise sensitive data and system integrity.

2. Medium level vulnerabilities are less likely to compromise confidential data and system
integrity, or are less serious security breaches.

3. Low level vulnerabilities can be a potential security threat.

4. Info level vulnerabilities signal a violation of good programming practices.

We highly recommend to focus on critical and medium-level vulnerabilities first.

4

https://login.derscanner.com/projects/ebb0ba76-01cd-4dd8-a89b-ffeec08ced60/detailed_results
https://play.google.com/store/apps/details?id=acr.browser.barebones&hl=en&gl=US

Lightning Browser

Scan History

Number Date and
Time

Status Languages Lines of
Code

Number of Vulnerabilities Score

Critical Medium Low Info Total

1/1 2022-07-18
09:31:55

completed Java, Config files,
PL/SQL

294 599 3 156 358 400 917 2.7/5.0

5

Lightning Browser

ABOUT OWASP MOBILE TOP 10 2016

Report classifies the level of vulnerability by OWASP Mobile Top 10 2016. The Open Web
Application Security Project (OWASP) is an online community which creates freely-available
articles, methodologies, documentation, tools, and technologies in the field of web application
security. One of its main projects is OWASP Top 10 aiming to raise awareness about
application security by identifying some of the most critical risks that organizations face. The
Top 10 project is referenced by many standards, books, tools, and organizations, including
MITRE, PCI DSS, DISA, FTC, and many more.
Note that some vulnerabilities may belong to the number of categories or to none at all. To
see the full list of vulnerabilities, choose the By severity classification method.

M1

Improper Platform Usage

This category covers misuse of a platform feature or failure to use platform security
controls. It might include Android intents, platform permissions, misuse of TouchID, the
Keychain, or some other security control that is part of the mobile operating system.

M2

Insecure Data Storage

Insecure data storage vulnerabilities occur when development teams assume that users or
malware will not have access to a mobile device's filesystem and subsequent sensitive
information in data stores on the device. Filesystems are easily accessible. When data is not
protected properly, specialized tools are all that is needed to view application data.

M3

Insecure Communication

Mobile applications frequently do not protect network traffic. They may use SSL/TLS
during authentication but not elsewhere. This inconsistency leads to the risk of exposing
data and session IDs to interception. Also, this category includes all communications
technologies that a mobile device might use: TCP/IP, Wi-Fi, Bluetooth/Bluetooth-LE, NFC,
audio, infrared, GSM, 3G, SMS, etc.

M4

Insecure Authentication

Poor or missing authentication schemes allow an adversary to anonymously execute
functionality within the mobile application or backend server used by the mobile
application. Weaker authentication for mobile applications is fairly prevalent due to a
mobile device's input form factor. The form factor highly encourages short passwords that
are often purely based on 4-digit PINs.

6

Lightning Browser

M5

Insufficient Cryptography

In order to exploit this weakness, an adversary must successfully return encrypted code or
sensitive data to its original unencrypted form due to weak encryption algorithms or flaws
within the encryption process.

M6

Insecure Authorization

This is a category to capture any failures in authorization (e.g., authorization decisions on
the client side, forced browsing, etc.). It is distinct from authentication issues. If the app
does not authenticate users at all in a situation where it should (e.g., granting anonymous
access to some resource or service when authenticated and authorized access is required),
then that is an authentication failure, not an authorization failure.

M7

Poor Code Quality

Code quality issues are fairly prevalent within most mobile code. Most code quality issues
are fairly benign and result in bad programming practice. This category would capture
things like buffer overflows, format string vulnerabilities, and various other code-level
mistakes where the solution is to rewrite some code that's running on the mobile device.

M8

Code Tampering

Once the application is delivered to the mobile device, the code and data resources remain
there. An attacker can either directly modify the code, change the contents of memory
dynamically, change or replace the system APIs that the application uses, or modify the
application's data and resources. This can provide the attacker a direct method of
subverting the intended use of the software for personal or monetary gain.

M9

Reverse Engineering

Generally, all mobile code is susceptible to reverse engineering. Some apps are more
susceptible than others. Code written in languages or frameworks that allow for dynamic
introspection at runtime (Java, .NET, Objective C, Swift) are particularly at risk for reverse
engineering.

M10

Extraneous Functionality

There is a high likelihood that any given mobile app contains extraneous functionality that
is not directly exposed to the user via the interface. Most of this additional code is benign in
nature and will not give an attacker any additional insight into backend capabilities.
However, some extraneous functionality can be very useful to an attacker.

7

Lightning Browser

SCAN INFORMATION

1/1 2022-07-18 09:31:55

Scan Statistics

Status

completed

Score

2.7/5.0

Duration

1:55:15

Lines of Code

294 599

Critical Medium Low Info Total

Vulnerabilities

3 156 358 400 917

Found Vulnerabilities

Vulnerability Types

8

Lightning Browser

Language Statistics

Language

Status

Duration

Lines of Code

Number of Vulnerabilities

Critical

Medium

Low

Info

Total

JVM
languages

completed

1:55:07

236 160

3

133

358

400

894

Config files

completed

0:00:05

58 277

0

23

0

0

23

PL/SQL

completed

0:00:02

162

0

0

0

0

0

Classification by OWASP Mobile Top 10 2016

9

Lightning Browser

Vulnerabilities

Occurrences

Critical

Medium

Low

Info

Total

Critical

Medium

Low

Info

Total

M1

0

2

0

0

2

0

2

0

0

2

M2

0

4

0

0

4

0

29

0

0

29

M3

2

6

0

0

8

2

32

0

0

34

M4

0

1

0

0

1

0

3

0

0

3

M5

0

3

0

0

3

0

26

0

0

26

M6

0

0

0

0

0

0

0

0

0

0

M7

0

1

0

0

1

0

1

0

0

1

M8

0

0

0

0

0

0

0

0

0

0

M9

0

0

0

0

0

0

0

0

0

0

M10

0

0

0

0

0

0

0

0

0

0

10

Lightning Browser

Vulnerability List

Vulnerabilities are displayed accordingly to export settings: 37 selected

Actual: 37 of 917

M1

Improper Platform Usage

Medium vulnerabilities

2*

Receiver without permissions

Android

1

androidx/appcompat/app/j0.java:47

Not processed

Broadcast sender without permissions

Android

1

acr/browser/lightning/n0/n.java:39

Not processed

M2

Insecure Data Storage

Medium vulnerabilities

29*

External storage usage

Android

3

acr/browser/lightning/settings/fragment/BookmarkSettingsFragment.java:63

Not processed

acr/browser/lightning/settings/fragment/BookmarkSettingsFragment.java:66

Not processed

androidx/core/content/FileProvider.java:94

Not processed

Unsafe SSL/TLS versions

Java

1

org/jsoup/helper/HttpConnection$Response.java:303

Not processed

HTTP usage

Java

2

* Rejected vulnerabilities are not taken into account

11

Lightning Browser

M2

Insecure Data Storage

Medium vulnerabilities

HTTP usage

Java

acr/browser/lightning/reading/HtmlFetcher.java:51

Not processed

acr/browser/lightning/reading/HtmlFetcher.java:359

Not processed

HTTP usage

Config files

23

META-INF/CHANGES:791

Not processed

META-INF/CHANGES:902

Not processed

META-INF/CHANGES:905

Not processed

META-INF/CHANGES:927

Not processed

META-INF/CHANGES:930

Not processed

META-INF/CHANGES:982

Not processed

META-INF/CHANGES:985

Not processed

META-INF/CHANGES:989

Not processed

META-INF/CHANGES:995

Not processed

META-INF/CHANGES:999

Not processed

META-INF/CHANGES:1003

Not processed

META-INF/CHANGES:1006

Not processed

META-INF/CHANGES:1009

Not processed

META-INF/CHANGES:1012

Not processed

META-INF/CHANGES:1015

Not processed

META-INF/CHANGES:1019

Not processed

META-INF/CHANGES:1022

Not processed

META-INF/CHANGES:1025

Not processed

META-INF/CHANGES:1044

Not processed

* Rejected vulnerabilities are not taken into account

12

Lightning Browser

M2

Insecure Data Storage

Medium vulnerabilities

HTTP usage

Config files

META-INF/CHANGES:1063

Not processed

META-INF/README.md:6

Not processed

META-INF/README.md:19

Not processed

META-INF/README.md:22

Not processed

M3

Insecure Communication

Critical vulnerabilities

2*

Unsafe custom SSL implementation (trivial)

Android

1

org/jsoup/helper/e.java:8#22

Not processed

No hostname verification

Android

1

org/jsoup/helper/d.java:14

Not processed

Medium vulnerabilities

32*

External storage usage

Android

3

acr/browser/lightning/settings/fragment/BookmarkSettingsFragment.java:63

Not processed

acr/browser/lightning/settings/fragment/BookmarkSettingsFragment.java:66

Not processed

androidx/core/content/FileProvider.java:94

Not processed

Unsafe custom SSL implementation (non-trivial)

Android

1

acr/browser/lightning/reading/f.java:9#31

Not processed

Unsafe SSL/TLS versions

Java

1

* Rejected vulnerabilities are not taken into account

13

Lightning Browser

M3

Insecure Communication

Medium vulnerabilities

Unsafe SSL/TLS versions

Java

org/jsoup/helper/HttpConnection$Response.java:303

Not processed

HTTP usage

Java

2

acr/browser/lightning/reading/HtmlFetcher.java:51

Not processed

acr/browser/lightning/reading/HtmlFetcher.java:359

Not processed

HTTP usage

Config files

23

META-INF/CHANGES:791

Not processed

META-INF/CHANGES:902

Not processed

META-INF/CHANGES:905

Not processed

META-INF/CHANGES:927

Not processed

META-INF/CHANGES:930

Not processed

META-INF/CHANGES:982

Not processed

META-INF/CHANGES:985

Not processed

META-INF/CHANGES:989

Not processed

META-INF/CHANGES:995

Not processed

META-INF/CHANGES:999

Not processed

META-INF/CHANGES:1003

Not processed

META-INF/CHANGES:1006

Not processed

META-INF/CHANGES:1009

Not processed

META-INF/CHANGES:1012

Not processed

META-INF/CHANGES:1015

Not processed

META-INF/CHANGES:1019

Not processed

* Rejected vulnerabilities are not taken into account

14

Lightning Browser

M3

Insecure Communication

Medium vulnerabilities

HTTP usage

Config files

META-INF/CHANGES:1022

Not processed

META-INF/CHANGES:1025

Not processed

META-INF/CHANGES:1044

Not processed

META-INF/CHANGES:1063

Not processed

META-INF/README.md:6

Not processed

META-INF/README.md:19

Not processed

META-INF/README.md:22

Not processed

Location data usage

Android

2

androidx/appcompat/app/c1.java:25

Not processed

androidx/appcompat/app/c1.java:26

Not processed

M4

Insecure Authentication

Medium vulnerabilities

3*

External storage usage

Android

3

acr/browser/lightning/settings/fragment/BookmarkSettingsFragment.java:63

Not processed

acr/browser/lightning/settings/fragment/BookmarkSettingsFragment.java:66

Not processed

androidx/core/content/FileProvider.java:94

Not processed

* Rejected vulnerabilities are not taken into account

15

Lightning Browser

M4

Insecure Authentication

M5

Insufficient Cryptography

Medium vulnerabilities

26*

Unsafe SSL/TLS versions

Java

1

org/jsoup/helper/HttpConnection$Response.java:303

Not processed

HTTP usage

Java

2

acr/browser/lightning/reading/HtmlFetcher.java:51

Not processed

acr/browser/lightning/reading/HtmlFetcher.java:359

Not processed

HTTP usage

Config files

23

META-INF/CHANGES:791

Not processed

META-INF/CHANGES:902

Not processed

META-INF/CHANGES:905

Not processed

META-INF/CHANGES:927

Not processed

META-INF/CHANGES:930

Not processed

META-INF/CHANGES:982

Not processed

META-INF/CHANGES:985

Not processed

META-INF/CHANGES:989

Not processed

META-INF/CHANGES:995

Not processed

META-INF/CHANGES:999

Not processed

META-INF/CHANGES:1003

Not processed

* Rejected vulnerabilities are not taken into account

16

Lightning Browser

M5

Insufficient Cryptography

Medium vulnerabilities

HTTP usage

Config files

META-INF/CHANGES:1006

Not processed

META-INF/CHANGES:1009

Not processed

META-INF/CHANGES:1012

Not processed

META-INF/CHANGES:1015

Not processed

META-INF/CHANGES:1019

Not processed

META-INF/CHANGES:1022

Not processed

META-INF/CHANGES:1025

Not processed

META-INF/CHANGES:1044

Not processed

META-INF/CHANGES:1063

Not processed

META-INF/README.md:6

Not processed

META-INF/README.md:19

Not processed

META-INF/README.md:22

Not processed

M7

Poor Code Quality

Medium vulnerabilities

1*

JavaScript execution allowed in WebView

Android

1

acr/browser/lightning/view/c0.java:834

Not processed

* Rejected vulnerabilities are not taken into account

17

Lightning Browser

M7

Poor Code Quality

* Rejected vulnerabilities are not taken into account

18

Lightning Browser

Detailed Results

No hostname verification (Android)

M3

Description

The verify() method defined in a class that implements the HostnameVerifier interface always
returns true. When establishing a secure connection the application does not check the
authenticity of the domain. This can lead to a loss of data confidentiality.
Within the establishing of a protected connection (handshake) server sends its public key and
certificate, which are a cryptographic proof that the public key belongs to the owner of the
server, to the client. The authenticity of certificates is provided by Certification Authority.
The correspondence between the certificate and the public key transferred to the client within
the handshake does not guarantee the security of the connection. The client must make sure that
the public key and the certificate come from the domain to which the connection is requested.
Such check is not provided at the level of SSL / TLS protocol . In its absence at the application
level, the attacker can violate the connection confidentiality by redirecting the user traffic
through the attacker’s server and presenting a certificate that is valid for the attacker’s domain.
To check whether the requested domain matches the certificate received in response Android
applications have the HostnameVerifier interface. The developer can use one of the existing
implementations of this interface (StrictHostnameVerifier, X509HostnameVerifier) or create
his/her own. It is assumed that the verify() method of the class that implements
HostnameVerifier returns true if the connection to this host is allowed within the current
connection and return false otherwise. The verify() method always returning true means that the
application trusts all owners of all valid certificates, regardless of the domain for which they
were obtained.
A possible attack scenario:

 1. The attacker enters the user’s WLAN and redirects user’s traffic through the attacker’s
server (for example, via a DNS cache poisoning attack).
 2. The user initiates a connection to https://safeserver.example.com.via an SSL / TLS protocol.
 3. Instead of the https://safeserver.example.com.public key an attacker sends the application
his/her own public key and a valid certificate issued by the certification authority for the
https://hackedserver.example.com.domain.
 4. The app makes sure that the resulting certificate is valid (for
https://hackedserver.example.com., ignoring the fact that the certificate has been issued not for
the resulting domain for which the connection was originally requested.
Insecure Communication vulnerabilities take the third place in the “OWASP Mobile Top 10 2016”
mobile application vulnerabilities ranking.

Example

In the following example, the verify() method of the BlindHostnameVerifier is redefined so that
any domain is recognized as valid:
private class BlindHostnameVerifier implements HostnameVerifier {
 @Override
 public boolean verify(final String s, final SSLSession sslSession) {

19

Lightning Browser

 return true;
 }
}

Recommendations

 • Check the authenticity of the certificate each time when establishing a connection via an SSL
/ TLS protocol.
 • Do not use AllowAllHostnameVerifier (the HostnameVerifier implementation that allows
connections with any domain), except for debugging during the application development.
 • Use one of the standard classes that implement HostnameVerifier (e.g.,
BrowserCompatHostnameVerifier, StrictHostnameVerifier, X509HostnameVerifier) to
authenticate the domain.
 • Use your own implementation of HostnameVerifier only when absolutely necessary.

Links

 1. Security with HTTPS and SSL - developer.android.com
 2. OWASP Mobile Top 10 2014: Insufficient Transport Layer Protection
 3. OWASP Mobile Top 10 2016-M3-Insecure Communication
 4. CWE-297: Improper Validation of Certificate with Host Mismatch
 5. Fixing Hostname Verification - Will Sargent / tersesystems.com
 6. CWE-295

Vulnerability Entries

org/jsoup/helper/d.java:14

Level

Critical

11
12 @Override
13 public boolean verify(final String s, final SSLSession sslSession) {

14 return true;

15 }
16 }

Unsafe custom SSL implementation
(trivial) (Android)

M3

20

https://developer.android.com/training/articles/security-ssl
https://owasp.org/www-project-mobile-top-10/2014-risks/m3-insufficient-transport-layer-protection
https://owasp.org/www-project-mobile-top-10/2016-risks/m3-insecure-communication
https://cwe.mitre.org/data/definitions/297.html
https://tersesystems.com/2014/03/23/fixing-hostname-verification/
https://cwe.mitre.org/data/definitions/295.html

Lightning Browser

Description

The class that implements the X509TrustManager or SSLSocketFactory interface may contain
trivial methods. This can lead to a loss of confidentiality of the data transferred an SSL / TSL
protocol.
Within the establishing of a protected connection (handshake) server sends its public key and
certificate, which are a cryptographic proof that the public key belongs to the owner of the
server, to the client. The authenticity of certificates is provided by Certification Authority.
If it is necessary for the application functioning to take the certificate that is not signed by a
recognized certification authority (for example, a self-signed certificate), then developers create
a class that implements the X509TrustManager or SSLSocketFactory interface. Often methods of
this class are trivial (accepting all certificates), which makes the application vulnerable to man in
the middle (MitM) attacks. By providing a valid self-signed certificate an attacker can violate the
confidentiality of the connection and get an access to valuable data.
Even if the methods of the redefined class are not trivial, their implementation is likely to be
contain mistakes leading to the same consequences.
A possible attack scenario:

 1. The attacker enters the user’s WLAN and redirects user’s traffic through the attacker’s
server (for example, via DNS cache poisoning).
 2. The user initiates a connection to https://safeserver.example.com.via an SSL / TLS protocol
through the application.
 3. The attacker sends his/her own public key and a self-signed certificate generated by
him/herself for the https://safeserver.example.com.domain to the application .
 4. The application verifies that the received certificate matches the requested domain,
ignoring the fact that the received certificate is self-signed.
Insecure Communication vulnerabilities take the third place in the “OWASP Mobile Top 10 2016”
mobile application vulnerabilities ranking.

Example

In the following example, the BlindX509TrustManager class that does not validate a certificate is
defined:
private class BlindX509TrustManager implements X509TrustManager
{
 @Override
 public void checkClientTrusted(final X509Certificate[] array, final String s) throws
CertificateException {
 }

 @Override
 public void checkServerTrusted(final X509Certificate[] array, final String s) throws
CertificateException {
 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return new X509Certificate[0];
 }
}

21

Lightning Browser

Recommendations

 • Check the validity of the certificate each time when establishing a connection via a SSL / TLS
protocol.
 • Use standard implementations of X509TrustManager.
 • If accepting self-signed certificates is necessary, generate your own X509TrustManager
implementation using KeyStore. Explicitly specify the certificates that should be taken and reject
all others.

Links

 1. Security with HTTPS and SSL - developer.android.com
 2. OWASP Mobile Top 10 2014-M3: Insufficient Transport Layer Protection
 3. OWASP Mobile Top 10 2016-M3-Insecure Communication
 4. CWE-295: Improper Certificate Validation
 5. HTTPS with Client Certificates on Android - Rich Freedman / chariotsolutions.com
 6. SSL on Android: The Basics - Mark Murphy / commonsware.com
 7. Using self signed certificates in Android - Taneli Korri
 8. Trusting all certificates using HttpClient over HTTPS - emmby, Bostone / stackoverflow.com

Vulnerability Entries

org/jsoup/helper/e.java:8#22

Level

Critical

5
6 class e implements X509TrustManager
7 {

8 e() {
9 super();
10 }
11
12 ...
13
14 @Override
15 public X509Certificate[] getAcceptedIssuers() {
16 return null;

17 }
18 }

22

https://developer.android.com/training/articles/security-ssl
https://owasp.org/www-project-mobile-top-10/2014-risks/m3-insufficient-transport-layer-protection
https://owasp.org/www-project-mobile-top-10/2016-risks/m3-insecure-communication
https://cwe.mitre.org/data/definitions/295.html
https://chariotsolutions.com/blog/post/https-with-client-certificates-on/
https://commonsware.com/blog/2013/03/04/ssl-android-basics.html
https://www.tanelikorri.com/tutorial/android/using-self-signed-certificates-in-android/
https://stackoverflow.com/questions/2642777/trusting-all-certificates-using-httpclient-over-https/6378872#6378872

Lightning Browser

Broadcast sender without permissions
(Android)

M1

Description

The application sends a broadcast message without specifying the appropriate permissions for
the receiving application.
Messages sent this way are available to any receiver. Valuable data contained in the message may
be compromised.
Android uses broadcast messages for system events such as battery level, network connections,
incoming calls, time zone changes, data connection status, incoming SMS messages or phone
calls. Broadcast messages are also used to notify listeners of system or application events.
Broadcast messages make the application more open. By passing events using messages, you
open the components of your applications to third-party applications, and third-party developers
respond to events without having to modify your original application.
Senders of intents can make sure that the recipient has permission, specifying a non-zero
permission when calling the method. Only the application with this permission will receive the
intent. If data in broadcast intents can be sensitive, you should consider applying permissions to
ensure that malicious applications can not register to receive these messages without the
appropriate permissions. In these circumstances, you can also consider calling the recipient
directly without performing the mailing.
Improper Platform Usage vulnerabilities take the first place in the “OWASP Mobile Top 10 2016”
mobile application vulnerabilities ranking.

Example

In the following example, a broadcast message is sent insecurely:
context.sendBroadcast(intent);
A secure alternative:
context.sendBroadcast(intent, "permission.ALLOW_INCOMING");

Recommendations

 • Explicitly specify permissions that the broadcast messages receiver must have.
 • Avoid using broadcast messages for valuable data transmission.

Links

 1. OWASP Top 10 2013-A5-Security Misconfiguration
 2. Mobile Top 10 2016-M1-Improper Platform Usage
 3. Context - developer.android.com
 4. CWE-941

23

https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-project-mobile-top-10/2016-risks/m1-improper-platform-usage
https://developer.android.com/reference/android/content/Context
https://cwe.mitre.org/data/definitions/941.html

Lightning Browser

Vulnerability Entries

acr/browser/lightning/n0/n.java:39

Level

Medium

36 this.c = c;
37 }
38

39 private void f(final Activity p0) {

40 //
41 // This method could not be decompiled.
42 //

External storage usage (Android)

M2

M3

M4

Description

The application writes data to the external storage.
Files written to external storage device are readable by all applications and can be changed when
the user connects the device to a computer in a USB drive mode. Besides, files stored in external
storage will remain there even after the application is deleted. This can lead to a valuable data
confidentiality loss.

Example

In the following example, the application calls a method, which returns a reference to an external
storage device:
private void WriteToFile(String what_to_write) {
 try {
 File root = Environment.getExternalStorageDirectory();
 if(root.canWrite()) {
 File dir = new File(root + "write_to_the_SDcard");
 File datafile = new File(dir, number + ".extension");
 FileWriter datawriter = new FileWriter(datafile);
 BufferedWriter out = new BufferedWriter(datawriter);
 out.write(what_to_write);
 out.close();
 }

24

Lightning Browser

 }
}
Secure alternative (internal memory used; files created by the application and stored in it are
available only to this application):
String FILENAME = "hello_file";
String string = "hello world!";
FileOutputStream fos = openFileOutput(FILENAME, Context.MODE_PRIVATE);
fos.write(string.getBytes());
fos.close();

Recommendations

 • Store files in the internal memory, then they will only be available to the application that
stored them.
 • Use SQLite database: override SQLiteOpenHelper class and OnCreate() method.

Links

 1. OWASP: Insecure Storage
 2. Storage Options - developer.android.com
 3. CWE-250: Execution with Unnecessary Privileges
 4. CWE-921: Storage of Sensitive Data in a Mechanism without Access Control

25

https://wiki.owasp.org/index.php/Insecure_Storage
https://developer.android.com/training/data-storage
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/921.html

Lightning Browser

Vulnerability Entries

acr/browser/lightning/settings/fragment/BookmarkSettingsFragment.java:63

Level

Medium

60 final StringBuilder sb = new StringBuilder();
61 sb.append(string);
62 sb.append(": ");

63 sb.append(Environment.getExternalStorageDirectory());

64 r.b((CharSequence)sb.toString());
65 if (file == null) {
66 file = new File(Environment.getExternalStorageDirectory().toString());

acr/browser/lightning/settings/fragment/BookmarkSettingsFragment.java:66

Level

Medium

63 sb.append(Environment.getExternalStorageDirectory());
64 r.b((CharSequence)sb.toString());
65 if (file == null) {

66 file = new File(Environment.getExternalStorageDirectory().toString());

67 }
68 Label_0115: {
69 try {

androidx/core/content/FileProvider.java:94

Level

Medium

91 parent = context.getCacheDir();
92 }
93 else if ("external-path".equals(name)) {

94 parent = Environment.getExternalStorageDirectory();

95 }

26

Lightning Browser

96 else if ("external-files-path".equals(name)) {
97 final File[] b = androidx.core.content.b.b(context, null);

JavaScript execution allowed in
WebView (Android)

M7

Description

The setJavaScriptEnabled(true) method, allowing the execution of JavaScript code, is called for
an instance of the WebView class (designed to download and display HTML pages). This
behavior is prohibited by default. A setJavaScriptEnabled(true) call can contribute to the success
of cross-site scripting (XSS) attacks. Among the possible consequences of such an attack there is
the loss of confidentiality of application data, such as user session data.
Cross-site scripting is one of the most common types of attacks on web applications. XSS-attacks
take the seventh place in the “OWASP Top 10 2017” list of ten most significant web application
vulnerabilities. In the mobile application vulnerabilities “OWASP Top 10 Mobile Risks 2014”
ranking, client side injection attacks, which include some XSS-attack, take the seventh place.
The main phase of any XSS-attack is an imperceptible for the victim execution of a malicious code
in the context of the vulnerable application. For this purpose, the functionality of the client
application (browser) is used that allows to automatically execute scripts embedded in web page
code. In most cases, these malicious scripts are implemented in JavaScript. Thus, the
setJavaScriptEnabled(true) call is one of the necessary conditions for an XSS attack.
Consequences of an XSS attack vary from violations of application functionality to complete loss
of user data confidentiality. The malicious code can steal cookies during the XSS-attack, which
gives an attacker the ability to make requests to the server on behalf of the user.
OWASP proposes the following classification of XSS-attacks.
Server type XSS attacks occur when data from an untrusted source is included into the response
returned by the server. The source of such data can be both user input and server database
(where it had been previously injected by an attacker who exploited vulnerabilities in the server-
side application).
Client type XSS attacks occur when the raw data from the user input contains code that changes
the Document Object Model (DOM) of the web page received from the server. The source of such
data can be both the DOM and the data received from the server (e.g., in response to an AJAX-
request).
The typical server type attack scenario:

27

Lightning Browser

 1. Unchecked data, usually from the HTTP-request, get into the server part of the application.
 2. The server dynamically generates a web page that contains the unchecked data.
 3. In the process of generating a web page, server does not prevent the inclusion of an
executable code that can be executed in the client (browser), such as JavaScript code language,
HTML-tags, HTML-attributes, Flash, ActiveX, etc., in the page code.
 4. The victim’s client application displays the web page that contains the malicious code
embedded using the help of data from an untrusted source.
 5. Since malicious code is embedded in the web page coming from the known server, the client
part of the application (browser) executes it with the rights specified for the application.
 6. This violates same-origin policy, according to which the code from the one source must not
get an access to resources from another source.
Client type attacks are executed in a similar way with the only difference that the malicious code
is injected during the phase of the client application work with the document object model
received from the server.
In the context of Android applications attention must be payed vulnerabilities that lead to DOM-
based XSS attacks (a subset of client type XSS attacks). The difference between this type of attack
and traditional XSS attacks is that in the case of DOM-based XSS malicious code is not sent to the
server. Therefore, the server means of protection, such as escaping special characters in the
output of the server application, in this case are useless.

Example

In the following example, the code enables the ability to perform JavaScript code in the WebView
class instance and loads the web page from the URL obtained from an Intent object:
WebView webview = (WebView)findViewById(R.id.webview);
webview.getSettings().setJavaScriptEnabled(true);
String url = this.getIntent().getExtras().getString("url");
webview.loadUrl(url);
If the value of the url variable contains the javascript: prefix, then both this code and JavaScript-
code will be executed in the context of the loaded web page. In this example, the malicious code
is stored outside the application, is loaded during the processing of the loaded web page, and is
included into the dynamic context of the application.

Recommendations

 • Do not call setJavaScriptEnabled(true), if the JavaScript-code execution is not necessary for
the application functioning.
 • Make sure that the parameters used by the WebView instance to display web pages can be
loaded only from trusted sources (possibly only local).
 • Implement a validation mechanism that escapes potentially dangerous characters or
character sequences in the parameters passed to an instance of the WebView class.

28

Lightning Browser

Links

 1. OWASP: Cross-site Scripting (XSS)
 2. CWE-79: Improper Neutralization of Input During Web Page Generation
 3. OWASP: Types of Cross-Site Scripting
 4. OWASP: XSS Prevention Cheat Sheet
 5. OWASP: DOM-based XSS Prevention Cheat Sheet
 6. OWASP Top 10 2013-A3-Cross-Site Scripting (XSS)
 7. OWASP Mobile Top 10 2014-M7: Client Side Injection
 8. OWASP Mobile Top 10 2016-M7-Poor Code Quality

Vulnerability Entries

acr/browser/lightning/view/c0.java:834

Level

Medium

831 throw null;
832 }
833 if (o12.u()) {

834 settings.setJavaScriptEnabled(true);

835 settings.setJavaScriptCanOpenWindowsAutomatically(true);
836 }
837 else {

Location data usage (Android)

M3

Description

The application uses the information about the device location received from GPS. When working
incorrect with such information, the application can compromise user privacy.
Applications that process GPS data must take precautions to prevent violation of the
confidentiality of this information.

Example

In the following example, the application requests notification about the device location change:
lm.requestLocationUpdates(LocationManager.GPS_PROVIDER, 1000, 0, locationListener);

29

https://owasp.org/www-community/attacks/xss/
https://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-project-mobile-top-10/2014-risks/m7-client-side-injection
https://owasp.org/www-project-mobile-top-10/2016-risks/m7-client-code-quality

Lightning Browser

Recommendations

 • Follow the instructions for secure data storage in order to prevent violations of the
confidentiality of information about the device location.

Links

 1. Location Strategies - developer.android.com
 2. OWASP Top 10 2013-A6-Sensitive Data Exposure
 3. CWE-250: Execution with Unnecessary Privileges

30

https://developer.android.com/training/location/retrieve-current
https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/data/definitions/250.html

Lightning Browser

Vulnerability Entries

androidx/appcompat/app/c1.java:25

Level

Medium

22
23 private Location a(final String s) {
24 try {

25 if (this.b.isProviderEnabled(s)) {

26 return this.b.getLastKnownLocation(s);
27 }
28 return null;

androidx/appcompat/app/c1.java:26

Level

Medium

23 private Location a(final String s) {
24 try {
25 if (this.b.isProviderEnabled(s)) {

26 return this.b.getLastKnownLocation(s);

27 }
28 return null;
29 }

Receiver without permissions (Android)

M1

Description

The application registers a broadcast receiver without defining the requirements for the sender
permissions.
The application will receive broadcast messages from any source, including malicious ones. This
may lead to an application compromise.
BroadcastReceiver processes asynchronous requests initiated by Intent.
By default recipients are exported and can be called by any other application. If your
BroadcastReceiver is intended for use by other applications, you can apply permissions to

31

Lightning Browser

recipients using the <receiver> element in the application manifest. This will prevent sending
intents from applications without proper permissions to BroadcastReceiver.
Improper Platform Usage vulnerabilities take the third place in the “OWASP Mobile Top 10
2016” mobile application vulnerabilities ranking. This category includes vulnerabilities related
to platform’s permissions, misuse of TouchID, the Keychain and other security control elements
that are part of the mobile operating system.

Example

In the following example, the application registers a broadcast receiver that does not check
sender permissions:
context.registerReceiver(broadcastReceiver, intentFilter);
Secure alternative:
context.registerReceiver(broadcastReceiver, intentFilter, "permission.ALLOW_BROADCAST",
handler);

Recommendations

 • Explicitly specify the permissions that the broadcast messages sender must have. Do not
accept messages from senders that do not have these permissions.
 • Implement validation mechanism for data contained in the received messages.

Links

 1. OWASP Top 10 2013-A5-Security Misconfiguration
 2. Context - developer.android.com
 3. CWE-925

32

https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://developer.android.com/reference/android/content/Context
https://cwe.mitre.org/data/definitions/925.html

Lightning Browser

Vulnerability Entries

androidx/appcompat/app/j0.java:47

Level

Medium

44 if (this.a == null) {
45 this.a = new i0(this);
46 }

47 this.b.e.registerReceiver(this.a, b);

48 }
49 }
50 }

Unsafe custom SSL implementation
(non-trivial) (Android)

M3

Description

The class that implements the X509TrustManager or SSLSocketFactory interface can contain
trivial methods. This can lead to a loss of confidentiality of the data transferred via SSL / TSL
protocol.
Within the establishing of a protected connection (handshake) server sends its public key and
certificate, which are a cryptographic proof that the public key belongs to the owner of the
server, to the client. The authenticity of certificates is provided by Certification Authority.
If it is necessary for the application functioning to take the certificate that is not signed by a
recognized certification authority (for example, a self-signed certificate), then developers create
a class that implements the X509TrustManager or SSLSocketFactory interface. Often methods of
this class are trivial (accepting all certificates), which makes the application vulnerable to man in
the middle (MitM) attacks. By providing a valid self-signed certificate an attacker can violate the
confidentiality of the connection and get an access to valuable data.
Even if the methods of the redefined class are not trivial, their implementation is likely to be
contain mistakes leading to the same consequences.
A possible attack scenario:

 1. The attacker enters the user’s WLAN and redirects user’s traffic through the attacker’s
server (for example, via DNS cache poisoning).
 2. The user initiates a connection to https://safeserver.example.com.via an SSL / TLS protocol
through the application.
 3. The attacker sends his/her own public key and a self-signed certificate generated by
him/herself for the https://safeserver.example.com.domain to the application .
 4. The application verifies that the received certificate matches the requested domain,
ignoring the fact that the received certificate is self-signed.

33

Lightning Browser

Insufficient Transport Layer Protection vulnerabilities take the third place in the “OWASP Mobile
Top 2014” mobile platforms vulnerabilities ranking.

Example

In the following example, the BlindX509TrustManager class that does not validate a certificate is
defined:
private class BlindX509TrustManager implements X509TrustManager
{
 @Override
 public void checkClientTrusted(final X509Certificate[] array, final String s) throws
CertificateException {
 }

 @Override
 public void checkServerTrusted(final X509Certificate[] array, final String s) throws
CertificateException {
 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return new X509Certificate[0];
 }
}

Recommendations

 • Check the validity of the certificate each time when establishing a connection via a SSL / TLS
protocol.
 • Use standard implementations of X509TrustManager.
 • If accepting self-signed certificates is necessary, generate your own X509TrustManager
implementation using KeyStore. Explicitly specify the certificates that should be taken and reject
all others.

Links

 1. Security with HTTPS and SSL - developer.android.com
 2. OWASP Mobile Top 10 2014-M3: Insufficient Transport Layer Protection
 3. OWASP Mobile Top 10 2016-M3-Insecure Communication
 4. CWE-295: Improper Certificate Validation
 5. HTTPS with Client Certificates on Android - Rich Freedman / chariotsolutions.com
 6. SSL on Android: The Basics - Mark Murphy / commonsware.com
 7. Using self signed certificates in Android - Taneli Korri
 8. Trusting all certificates using HttpClient over HTTPS - emmby, Bostone / stackoverflow.com

34

https://developer.android.com/training/articles/security-ssl
https://owasp.org/www-project-mobile-top-10/2014-risks/m3-insufficient-transport-layer-protection
https://owasp.org/www-project-mobile-top-10/2016-risks/m3-insecure-communication
https://cwe.mitre.org/data/definitions/295.html
https://chariotsolutions.com/blog/post/https-with-client-certificates-on/
https://commonsware.com/blog/2013/03/04/ssl-android-basics.html
https://www.tanelikorri.com/tutorial/android/using-self-signed-certificates-in-android/
https://stackoverflow.com/questions/2642777/trusting-all-certificates-using-httpclient-over-https/6378872#6378872

Lightning Browser

Vulnerability Entries

acr/browser/lightning/reading/f.java:9#31

Level

Medium

6
7 class f implements X509TrustManager
8 {

9 f(final e e) {
10 super();
11 }
12
13 ...
14
15 @Override
16 public X509Certificate[] getAcceptedIssuers() {
17 return null;

18 }
19 }

HTTP usage (Config files)

M2

M3

M5

Description

Using HTTP rather than HTTPS allows “the man in the middle” attack. This can lead to a complete
confidentiality loss of the transferred data.
Using HTTPS, which is based on HTTP and SSL / TLS, helps to protect the transferred data
against unauthorized access and modification. It is recommended to use HTTPS for all cases of
data transfer between the client and the server, in particular, for the login page and all pages that
require authentication.

Example

In the following example, the application stores an address with HTTP protocol:
url = "http://example.com"

35

Lightning Browser

Recommendations

 • Use only secure protocols (e.g., HTTPS) for the confidential data transfer between the client
and the server.

Links

 1. OWASP Top 10 2017-A3-Sensitive Data Exposure
 2. Transport Layer Protection Cheat Sheet – OWASP
 3. Web Security: Why You Should Always Use HTTPS – Mike Shema / Mashable
 4. CWE-319: Cleartext Transmission of Sensitive Information
 5. CWE CATEGORY: OWASP Top Ten 2017 Category A6 - Security Misconfiguration

36

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A3-Sensitive_Data_Exposure
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://mashable.com/archive/https-web-security
https://cwe.mitre.org/data/definitions/319.html
https://cwe.mitre.org/data/definitions/1032.html

Lightning Browser

Vulnerability Entries

META-INF/CHANGES:791

Level

Medium

788
789 *** Release 1.6.0 [2011-Jun-13]
790 * HTML5 conformant parser. Complete reimplementation of HTML tokenisation and
parsing, to implement the

791 http://whatwg.org/html spec. This ensures jsoup parses HTML identically to current
modern browsers.

792
793 * When parsing files from disk, files are loaded via memory mapping, to increase parse
speed.
794

META-INF/CHANGES:902

Level

Medium

899 doc.select("iframe").remove();
900
901 * Fixed issue in Entities when unescaping $ ("$")

902 <http://github.com/jhy/jsoup/issues/issue/34>

903
904 * Added restricted XHTML output entity option
905 <http://github.com/jhy/jsoup/issues/issue/35>

META-INF/CHANGES:905

Level

Medium

902 <http://github.com/jhy/jsoup/issues/issue/34>
903
904 * Added restricted XHTML output entity option

905 <http://github.com/jhy/jsoup/issues/issue/35>

37

Lightning Browser

906
907 *** Release 1.3.2 [2010-Aug-30]
908 * Treat HTTP headers as case insensitive in Jsoup.Connection. Improves compatibility
for HTTP responses.

META-INF/CHANGES:927

Level

Medium

924 * Further speed optimisations for parsing and output generation.
925
926 * Fixed support for case-sensitive HTML escape entities.

927 <http://github.com/jhy/jsoup/issues/issue/31>

928
929 * Fixed issue when parsing tags with keyless attributes.
930 <http://github.com/jhy/jsoup/issues/issue/32>

META-INF/CHANGES:930

Level

Medium

927 <http://github.com/jhy/jsoup/issues/issue/31>
928
929 * Fixed issue when parsing tags with keyless attributes.

930 <http://github.com/jhy/jsoup/issues/issue/32>

931
932 *** Release 1.2.3 [2010-Aug-04]
933 * Added support for automatic input character set detection and decoding. Jsoup now
automatically detects the encoding

META-INF/CHANGES:982

Level

Medium

38

Lightning Browser

979 * Added :contains(text) selector, to search for elements containing the specified text
980
981 * Added :has(selector) pseudo-selector

982 <http://github.com/jhy/jsoup/issues/issue/20>

983
984 * Added Element#parents and Elements#parents to retrieve an element's ancestor chain
985 <http://github.com/jhy/jsoup/issues/issue/20>

META-INF/CHANGES:985

Level

Medium

982 <http://github.com/jhy/jsoup/issues/issue/20>
983
984 * Added Element#parents and Elements#parents to retrieve an element's ancestor chain

985 <http://github.com/jhy/jsoup/issues/issue/20>

986
987 * Fixes an issue where appending / prepending rows to a table (or to similar implicit
988 element structures) would create a redundant wrapping elements

META-INF/CHANGES:989

Level

Medium

986
987 * Fixes an issue where appending / prepending rows to a table (or to similar implicit
988 element structures) would create a redundant wrapping elements

989 <http://github.com/jhy/jsoup/issues/issue/21>

990
991 * Improved implicit close tag heuristic detection when parsing malformed HTML
992

39

Lightning Browser

META-INF/CHANGES:995

Level

Medium

992
993 * Fixes an issue where text content after a script (or other data-node) was
994 incorrectly added to the data node.

995 <http://github.com/jhy/jsoup/issues/issue/22>

996
997 * Fixes an issue where text order was incorrect when parsing pre-document
998 HTML.

META-INF/CHANGES:999

Level

Medium

996
997 * Fixes an issue where text order was incorrect when parsing pre-document
998 HTML.

999 <http://github.com/jhy/jsoup/issues/issue/23>

1000
1001 *** Release 1.1.1 [2010-Jun-08]
1002 * Added selector support for :eq, :lt, and :gt

META-INF/CHANGES:1003

Level

Medium

1000
1001 *** Release 1.1.1 [2010-Jun-08]
1002 * Added selector support for :eq, :lt, and :gt

1003 <http://github.com/jhy/jsoup/issues/issue/16>

1004
1005 * Added TextNode#text and TextNode#text(String)
1006 <http://github.com/jhy/jsoup/issues/issue/18>

40

Lightning Browser

META-INF/CHANGES:1006

Level

Medium

1003 <http://github.com/jhy/jsoup/issues/issue/16>
1004
1005 * Added TextNode#text and TextNode#text(String)

1006 <http://github.com/jhy/jsoup/issues/issue/18>

1007
1008 * Throw exception if trying to parse non-text content
1009 <http://github.com/jhy/jsoup/issues/issue/17>

META-INF/CHANGES:1009

Level

Medium

1006 <http://github.com/jhy/jsoup/issues/issue/18>
1007
1008 * Throw exception if trying to parse non-text content

1009 <http://github.com/jhy/jsoup/issues/issue/17>

1010
1011 * Added Node#remove and Node#replaceWith
1012 <http://github.com/jhy/jsoup/issues/issue/19>

META-INF/CHANGES:1012

Level

Medium

1009 <http://github.com/jhy/jsoup/issues/issue/17>
1010
1011 * Added Node#remove and Node#replaceWith

1012 <http://github.com/jhy/jsoup/issues/issue/19>

41

Lightning Browser

1013
1014 * Allow _ and - in CSS ID selectors (per CSS spec).
1015 <http://github.com/jhy/jsoup/issues/issue/10>

META-INF/CHANGES:1015

Level

Medium

1012 <http://github.com/jhy/jsoup/issues/issue/19>
1013
1014 * Allow _ and - in CSS ID selectors (per CSS spec).

1015 <http://github.com/jhy/jsoup/issues/issue/10>

1016
1017 * Relative links are resolved to absolute when cleaning, to normalize
1018 output and to verify safe protocol. (Were previously discarded.)

META-INF/CHANGES:1019

Level

Medium

1016
1017 * Relative links are resolved to absolute when cleaning, to normalize
1018 output and to verify safe protocol. (Were previously discarded.)

1019 <http://github.com/jhy/jsoup/issues/issue/12>

1020
1021 * Allow combinators at start of selector query, for query refinements
1022 <http://github.com/jhy/jsoup/issues/issue/13>

META-INF/CHANGES:1022

Level

Medium

42

Lightning Browser

1019 <http://github.com/jhy/jsoup/issues/issue/12>
1020
1021 * Allow combinators at start of selector query, for query refinements

1022 <http://github.com/jhy/jsoup/issues/issue/13>

1023
1024 * Added Element#val() and #val(String) methods, for form values
1025 <http://github.com/jhy/jsoup/issues/issue/14>

META-INF/CHANGES:1025

Level

Medium

1022 <http://github.com/jhy/jsoup/issues/issue/13>
1023
1024 * Added Element#val() and #val(String) methods, for form values

1025 <http://github.com/jhy/jsoup/issues/issue/14>

1026
1027 * Changed textarea contents to parse as TextNodes, not DataNodes,
1028 so contents visible to text() (and val(), as treated as form input)

META-INF/CHANGES:1044

Level

Medium

1041 with attribute.
1042
1043 * Fixed assertion error when cleaning HTML with empty attribute

1044 <http://github.com/jhy/jsoup/issues/issue/7>

1045
1046 *** Release 0.2.2 (2010-Feb-07)
1047 * jsoup packages are now available in the Maven central repository.

META-INF/CHANGES:1063

43

Lightning Browser

Level

Medium

1060
1061 *** Release 0.1.2 (2010-Feb-02)
1062 * Fixed unrecognised tag handler to be more permissive

1063 <http://github.com/jhy/jsoup/issues/issue/1>

1064
1065
1066 *** Release 0.1.1 (2010-Jan-31)

META-INF/README.md:6

Level

Medium

3 **jsoup** is a Java library for working with real-world HTML. It provides a very convenient
API for extracting and manipulating data, using the best of DOM, CSS, and jquery-like
methods.
4
5

6 **jsoup** implements the [WHATWG HTML5](http://whatwg.org/html) specification, and
parses HTML to the same DOM as modern browsers do.

7
8 * scrape and [parse](https://jsoup.org/cookbook/input/parse-document-from-string)
HTML from a URL, file, or string
9 * find and [extract data](https://jsoup.org/cookbook/extracting-data/selector-syntax),
using DOM traversal or CSS selectors

META-INF/README.md:19

Level

Medium

16 See [**jsoup.org**](https://jsoup.org/) for downloads and the full [API
documentation](https://jsoup.org/apidocs/).
17
18 ## Example

19 Fetch the [Wikipedia](http://en.wikipedia.org/wiki/Main_Page) homepage, parse it to a
[DOM](https://developer.mozilla.org/en-

44

Lightning Browser

US/docs/Web/API/Document_Object_Model/Introduction), and select the headlin...

20
21 ```java
22 Document doc = Jsoup.connect("http://en.wikipedia.org/").get();

META-INF/README.md:22

Level

Medium

19 Fetch the [Wikipedia](http://en.wikipedia.org/wiki/Main_Page) homepage, parse it to a
[DOM](https://developer.mozilla.org/en-
US/docs/Web/API/Document_Object_Model/Introduction), and select the headlin...
20
21 ```java

22 Document doc = Jsoup.connect("http://en.wikipedia.org/").get();

23 log(doc.title());
24 Elements newsHeadlines = doc.select("#mp-itn b a");
25 for (Element headline : newsHeadlines) {

HTTP usage (Java)

M2

M3

M5

Description

Using HTTP rather than HTTPS allows “the man in the middle” attack. This can lead to a complete
confidentiality loss of the transferred data.
Using HTTPS, which is based on HTTP and SSL / TLS, helps to protect the transferred data
against unauthorized access and modification. It is recommended to use HTTPS for all cases of
data transfer between the client and the server, in particular, for the login page and all pages that
require authentication.

Example

In the following example, the application initiates a HTTP connection:
URL exampleUrl = new URL("http://www.example.org/");
URLConnection exampleConn = exampleUrl.openConnection();

45

Lightning Browser

Recommendations

 • Use only secure protocols (e.g., HTTPS) for the confidential data transfer between the client
and the server.

Links

 1. OWASP Top 10 2017-A3-Sensitive Data Exposure
 2. Transport Layer Protection Cheat Sheet – OWASP
 3. Web Security: Why You Should Always Use HTTPS – Mike Shema / Mashable
 4. CWE-319: Cleartext Transmission of Sensitive Information
 5. CWE CATEGORY: OWASP Top Ten 2017 Category A6 - Security Misconfiguration

46

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A3-Sensitive_Data_Exposure
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://mashable.com/archive/https-web-security
https://cwe.mitre.org/data/definitions/319.html
https://cwe.mitre.org/data/definitions/1032.html

Lightning Browser

Vulnerability Entries

acr/browser/lightning/reading/HtmlFetcher.java:51

Level

Medium

48
49 public HtmlFetcher() {
50 super();

51 this.a = "http://jetsli.de/crawler";

52 final StringBuilder a = d.a.a.a.a.a("Mozilla/5.0 (compatible; Jetslide; +");
53 a.append(this.a);
54 a.append(')');

acr/browser/lightning/reading/HtmlFetcher.java:359

Level

Medium

356 }
357
358 private HttpURLConnection b(final String spec, final int n, final boolean b) {

359 final HttpURLConnection httpURLConnection = (HttpURLConnection)new
URL(spec).openConnection(Proxy.NO_PROXY);

360 httpURLConnection.setRequestProperty("User-Agent", this.b);
361 httpURLConnection.setRequestProperty("Accept", this.e);
362 if (b) {

Trace

"http://jetsli.de/crawler"

acr/browser/lightning/reading/HtmlFetcher.java:51

48
49 public HtmlFetcher() {
50 super();

51 this.a = "http://jetsli.de/crawler";

47

Lightning Browser

52 final StringBuilder a = d.a.a.a.a.a("Mozilla/5.0 (compatible; Jetslide; +");
53 a.append(this.a);
54 a.append(')');

URL.openConnection()

acr/browser/lightning/reading/HtmlFetcher.java:359

356 }
357
358 private HttpURLConnection b(final String spec, final int n, final boolean b) {

359 final HttpURLConnection httpURLConnection = (HttpURLConnection)new
URL(spec).openConnection(Proxy.NO_PROXY);

360 httpURLConnection.setRequestProperty("User-Agent", this.b);
361 httpURLConnection.setRequestProperty("Accept", this.e);
362 if (b) {

Unsafe SSL/TLS versions (Java)

M2

M3

M5

Description

SSL connection uses insecure settings. The established connection is insecure and can cause a
compromise of valuable data.
The SSLv2, SSLv23, SSLv3, TLSv1.0 and TLSv1.1 protocols contain several flaws that make them
insecure, so they should not be used to transmit sensitive data.
The Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols provide a
protection mechanism to ensure the authenticity, confidentiality and integrity of data
transmitted between a client and web server. Both TLS and SSL have undergone revisions
resulting in periodic version updates. Each new revision was designed to address the security
weaknesses discovered in the previous versions. Use of an insecure version of TLS/SSL will
weaken the strength of the data protection and could allow an attacker to compromise, steal, or
modify sensitive information.
Weak versions of TLS/SSL may exhibit one or more of the following properties: * No protection
against man-in-the-middle attacks * Same key used for authentication and

48

Lightning Browser

encryption * Weak message authentication control * No protection against TCP connection
closing
The presence of these properties may allow an attacker to intercept, modify, or tamper with
sensitive data.

Example

In the following example, the application installs insecure TLS settings:
SSLContext context = SSLContext.getInstance("TLSv1");

Recommendations

 • Use the last version of the SSL/TLS protocol.

Links

 1. OWASP Top 10 2017-A3-Sensitive Data Exposure
 2. CWE CATEGORY: OWASP Top Ten 2017 Category A6 - Security Misconfiguration
 3. Vulnerability Summary for CVE-2014-3566
 4. CWE-757: Selection of Less-Secure Algorithm During Negotiation

Vulnerability Entries

org/jsoup/helper/HttpConnection$Response.java:303

Level

Medium

300 if (HttpConnection$Response.o == null) {
301 final e e = new e();
302 try {

303 final SSLContext instance = SSLContext.getInstance("SSL");

304 instance.init(null, new TrustManager[] { e }, new SecureRandom());
305 HttpConnection$Response.o = instance.getSocketFactory();
306 }

49

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A3-Sensitive_Data_Exposure
https://cwe.mitre.org/data/definitions/1032.html
https://nvd.nist.gov/vuln/detail/CVE-2014-3566
https://cwe.mitre.org/data/definitions/757.html

Lightning Browser

WAF Configuration Guide

HTTP usage

Description

Using HTTP rather than HTTPS allows “the man in the middle” attack. This can lead to a
complete confidentiality loss of the transferred data.
Using HTTPS, which is based on HTTP and SSL / TLS, helps to protect the transferred data
against unauthorized access and modification. It is recommended to use HTTPS for all cases of
data transfer between the client and the server, in particular, for the login page and all pages that
require authentication.

Vulnerability Entries

1. META-INF/CHANGES:791

2. META-INF/CHANGES:902

3. META-INF/CHANGES:905

4. META-INF/CHANGES:927

5. META-INF/CHANGES:930

6. META-INF/CHANGES:982

7. META-INF/CHANGES:985

8. META-INF/CHANGES:989

9. META-INF/CHANGES:995

10. META-INF/CHANGES:999

11. META-INF/CHANGES:1003

12. META-INF/CHANGES:1006

13. META-INF/CHANGES:1009

14. META-INF/CHANGES:1012

15. META-INF/CHANGES:1015

16. META-INF/CHANGES:1019

17. META-INF/CHANGES:1022

18. META-INF/CHANGES:1025

19. META-INF/CHANGES:1044

20. META-INF/CHANGES:1063

21. META-INF/README.md:6

22. META-INF/README.md:19

23. META-INF/README.md:22

50

Lightning Browser

HTTP usage

Description

Using HTTP rather than HTTPS allows “the man in the middle” attack. This can lead to a
complete confidentiality loss of the transferred data.
Using HTTPS, which is based on HTTP and SSL / TLS, helps to protect the transferred data
against unauthorized access and modification. It is recommended to use HTTPS for all cases of
data transfer between the client and the server, in particular, for the login page and all pages that
require authentication.

Vulnerability Entries

1. acr/browser/lightning/reading/HtmlFetcher.java:51

2. acr/browser/lightning/reading/HtmlFetcher.java:359

Path manipulation

Description

Using data from an untrusted source when working with the file system may give an attacker
access to important system files.
By manipulating variables that reference files with <)>> sequences and its variations or by using
absolute file paths, it may be possible to access arbitrary files and directories stored on file
system including application source code or configuration and critical system files.

Vulnerability Entries

1. c/h/b/a.java:43

2. c/h/b/a.java:120

Resource injection

Description

Using data from an untrusted source to identify the resource allows an attacker to view or
modify protected system resources.
The injection when working with resources (resource injection) occurs when an attacker can
specify the identifier to access the system resources (for example, the port number for the
network resource access). This allows him/her in particular to transfer valuable data to a third
party server.
Injection vulnerabilities take the first place in the “OWASP Top 10 2017” web-application
vulnerabilities ranking.

51

Lightning Browser

Vulnerability Entries

1. acr/browser/lightning/reading/g.java:76

2. acr/browser/lightning/reading/HtmlFetcher.java:252

3. acr/browser/lightning/reading/HtmlFetcher.java:359

4. acr/browser/lightning/view/c0.java:573

5. k/i1/g/c.java:146

6. k/i1/g/c.java:196

7. org/jsoup/helper/HttpConnection.java:36

8. org/jsoup/helper/HttpConnection.java:36

9. org/jsoup/helper/StringUtil.java:211

52

Lightning Browser

Scan Settings

1/1 2022-07-18 09:31:55

Source code

https://play.google.com/store/apps/details?id=acr.browser.ba
rebones&hl=en&gl=US

Select files for Analysis

**/*

Languages

ABAP

Delphi

Objective-C

Rust

VBScript

Apex

Go

Pascal

Solidity

Visual Basic 6

C#

Groovy

PHP

Swift

Vyper

C/C++

HTML5

PL/SQL

T-SQL

1C

COBOL

Java, Scala, Kotlin

Python

TypeScript

Config files

JavaScript

Perl

VB.NET

Dart

LotusScript

Ruby

VBA

Java/Scala/Kotlin Specific Settings

Do not build project (project is already built)

C/C++ Specific Settings

Visual Studio project

JavaScript Specific Settings

Analyze standard libraries

General Analysis Settings

Analyze libraries and nested archives

Incremental analysis

Source Code Charset

UTF-8

Filename Charset

UTF-8

Rule Sets —

53

Lightning Browser

Export Settings

Project Information

Vulnerability Dynamics

Scan History

Do not export scan history

Export entire scan history

Export the latest scans ...

Vulnerability Classification

OWASP Mobile Top 10 2016

Scan Information

Detected vulnerabilities chart

Vulnerability types chart

Language statistics

Analyzed Files Statistics

Scan error information

Scan Settings

54

Lightning Browser

Issues Filter

Severity Level

Critical

Medium

Low

Info

Vulnerability Types

Vulnerabilities in standard libraries

Vulnerabilities in .class files that could not be decompiled

With a task created in Jira

Vulnerabilities without WAF configuration guide

Languages

ABAP

Dart

Kotlin

Perl

TypeScript

Android

Delphi

LotusScript

Ruby

VB.NET

Apex

Go

Objective-C

Rust

VBA

C#

Groovy

Pascal

Scala

VBScript

C/C++

HTML5

PHP

Solidity

Visual Basic 6

COBOL

Java

PL/SQL

Swift

Vyper

Config files

JavaScript

Python

T-SQL

1C

55

Lightning Browser

Vulnerability List

Vulnerability Statuses

Not processed

Confirmed

Rejected

List of Vulnerability Entries

Do not export

Export all entries

Export no more than entries ...

56

Lightning Browser

Detailed Results

Vulnerability Statuses

Not processed

Confirmed

Rejected

List of Vulnerability Entries

Do not export

Export all entries

Export no more than entries ...

Source code

Do not export source code

Export entire vulnerable source code file

Export context in the number of lines of code 3

Trace

Do not export trace items

Export only the first and last items

Export all items

Additional information

Vulnerability сomment

Jira information

57

Lightning Browser

WAF Configuration Guide

Guide for vulnerability statuses

Not processed

Confirmed

Rejected

Guide for WAF

Imperva SecureSphere

ModSecurity

F5

General Report Settings

Report Export Settings

Table of Contents

Showing Statuses

58

