
Analysis Results

DVIA-v2-master.
zip

Report Date
2024-09-10 14:21:53
Report Author
admin
Classification Method
OWASP MASVS L1
Product Version
11.0-SNAPSHOT+f428841a
Rules Version
11-SNAPSHOT.130321

Confidentiality Note

Report DVIA-v2-master.zip

This report is intended only for the person(s) or entity to which it is addressed
and contains confidential and privileged information. If you are not the
intended recipient, you must not view, use, copy, disclose, or otherwise
disseminate this report or any part of it. Doing so is strictly prohibited, and may
result in legal proceedings. If you received this in error, please notify the sender
immediately and destroy any copies of this information.

2

Report DVIA-v2-master.zip

1 Project Information 4

Dynamics by vulnerabilities 5
Scan History 6

2 Scan Information 1/1 2024-09-04 10:09:22 7

Scan Statistics 7
Language Statistics 8
Classification by OWASP MASVS L1 9
Vulnerability List 11
Analysis Results 14

3 About OWASP MASVS L1 48

3

Report DVIA-v2-master.zip

01
Project Information

DVIA-v2-master.zip
Project Name

UUID
2e312ca0-6e81-4a21-966f-abee5b5de6bf

Project in DerScanner

4

https://10.208.64.152//projects/2e312ca0-6e81-4a21-966f-abee5b5de6bf/detailed_results

Report DVIA-v2-master.zip

Dynamics by vulnerabilities
Vulnerabilities are divided by severity level: critical, medium, low and info.

CRITICAL LEVEL MEDIUM LEVEL LOW LEVEL INFORMATION

Likely to lead to
compromise
confidential data
and violation of
the integrity of
the system.

May be less
likely to lead to
compromising
confidential data
and violating the
integrity of the
system, or are
less serious
security

Can become a
potential
security risk.

Signal a violation
of good
programming
practice.

First of all, pay attention to vulnerabilities of critical and medium levels.

5

Report DVIA-v2-master.zip

Dynamics by rating
The app score is calculated on a scale from 0 to 5. Score is calculated based on the number of critical
and medium level vulnerabilities. The impact of critical vulnerabilities is greater than that of medium
level vulnerabilities, and does not take into account the amount of code. Medium level vulnerabilities are
taken into account based on their frequency and total number of source code lines.

Scan History

Date and Time Status Languages Lines of
Code Number of Vulnerabilities

Critical Medium Low Info Total
Score

1/1 2024-09-04
10:09:22

completed Config files,
Objective-C,
C/C++, Swift

581
879

17 829 62 3 911 1.1/5.0

6

Report DVIA-v2-master.zip

02
Scan Information

1/1 2024-09-04 10:09:22
11-SNAPSHOT.130256

Scan Statistics

Status

Duration

Lines of Code

Score

Vulnerabilities

completed

1.1/5.0

0:47:13

581 879

Critical

17
Medium

829
Low

62
Info

3

Total

911

7

Report DVIA-v2-master.zip

Language Status Duration Lines of Code
Number of Vulnerabilities

Critical Medium Low Info Total

Config files completed 0:00:29 332 847 8 31 0 0 39

Objective-C completed 0:44:45 122 146 6 759 5 0 770

C/C++ completed 0:01:46 122 136 0 9 45 0 54

Swift completed 0:00:13 4 750 3 30 12 3 48

Language Statistics

Diagram of identified vulnerabilities

8

Report DVIA-v2-master.zip

Vulnerability Types

Classification by OWASP MASVS L1

Vulnerabilities Occurrences
Critical Medium Low Info Total Critical Medium Low Info Total

V1 0 0 0 0 0 0 0 0 0 0

V2 2 10 0 0 11 4 121 0 0 125

V3 2 4 1 0 7 5 32 2 0 39

9

Report DVIA-v2-master.zip

Vulnerabilities Occurrences
Critical Medium Low Info Total Critical Medium Low Info Total

V4 0 0 0 0 0 0 0 0 0 0

V5 2 4 0 0 6 2 35 0 0 37

V6 0 0 0 0 0 0 0 0 0 0

V7 0 6 1 1 8 0 421 1 1 423

10

Report DVIA-v2-master.zip

Vulnerability List

Vulnerabilities are displayed accordingly to
export settings: 26 selected

Actual: 26 of 911

V2 Data Storage and Privacy Requirements

Critical vulnerabilities 2*

Hardcoded password Swift 2
DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Sensitive Information in
Memory/Controller/SensitiveInformationInMemoryDetailsViewController.swift:32 Confirmed

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Sensitive Information in
Memory/Controller/SensitiveInformationInMemoryDetailsViewController.swift:19 Confirmed

Medium-level vulnerabilities 6*

Keyboard caching Swift 2
DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Broken
Cryptography/Controller/BrokenCryptographyDetailsViewController.swift:25 Confirmed

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Transport Layer
Protection/Controller/TransportLayerProtectionViewController.swift:22 Confirmed

External storage usage Swift 2
DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Broken
Cryptography/Controller/BrokenCryptographyDetailsViewController.swift:44 Confirmed

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Broken
Cryptography/Controller/BrokenCryptographyPinDetailsViewController.swift:98 Confirmed

Unsafe internal storage Objective-C 2
DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Side Channel Data
Leakage/Controller/Objective-C Methods/SetSharedCookies.m:55 Confirmed

DVIA-v2-master/DVIA-v2/Pods/Realm/Realm/RLMAnalytics.mm:240 Confirmed

Low-level vulnerabilities 0

Info-level vulnerabilities 0

11* Rejected vulnerabilities are not taken into account

Report DVIA-v2-master.zip

V3 Cryptography Requirements

Critical vulnerabilities 2*

Weak hashing algorithm Objective-C 2
DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/CloudKit/YapDatabaseCloudKitTransaction.m:1033 Confirmed

DVIA-v2-master/DVIA-v2/DVIA-v2/Vendor/RNCryptor/RNOpenSSLCryptor.m:60 Confirmed

Medium-level vulnerabilities 2*

Weak random number generator Objective-C 2
DVIA-v2-master/DVIA-
v2/Pods/Parse/Parse/Parse/Internal/Object/LocalIdStore/PFObjectLocalIdStore.m:198 Confirmed

DVIA-v2-master/DVIA-
v2/Pods/Parse/Parse/Parse/Internal/Commands/CommandRunner/URLSession/PFURLSessionC
ommandRunner.m:223

Confirmed

Low-level vulnerabilities 0

Info-level vulnerabilities 0

V5 Network Communication Requirements

Critical vulnerabilities 2*

Unsafe SSL settings Config files 1

DVIA-v2-master/DVIA-v2/DVIA-v2/Info.plist:40 Confirmed

Unsafe SSL settings Objective-C 1

DVIA-v2-master/DVIA-v2/Pods/Realm/Realm/RLMAnalytics.mm:240 Confirmed

Medium-level vulnerabilities 2*

Cookie: transmission not over SSL Swift 2
DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Side Channel Data
Leakage/Controller/CookiesViewController.swift:74#78 Confirmed

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Side Channel Data
Leakage/Controller/CookiesViewController.swift:67#71 Confirmed

Low-level vulnerabilities 0

12* Rejected vulnerabilities are not taken into account

Report DVIA-v2-master.zip

V5 Network Communication Requirements

Info-level vulnerabilities 0

V7 Code Quality and Build Setting Requirements

Critical vulnerabilities 0

Medium-level vulnerabilities 10*

Unsafe authentication (LocalAuthentication
framework)

Objective-C 2

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vulnerabilities/TouchIDBypass/Controller/TouchIDAuthentication.m:39 Confirmed

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vulnerabilities/TouchIDBypass/Controller/TouchIDAuthentication.m:39 Confirmed

Memory leak Objective-C 2

DVIA-v2-master/DVIA-v2/DVIA-v2/Home/DeviceInfo.m:77 Confirmed

DVIA-v2-master/DVIA-v2/DVIA-v2/Vendor/PDKeychainBindings/PDKeychainBindingsController.
m:58 Confirmed

Lack of dealloc method Objective-C 2
DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/CloudKit/YapDatabaseCloudKitOptions.m:3 Confirmed

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/CloudKit/Internal/YDBCKChangeQueue.m:15 Confirmed

NSLog usage Objective-C 2

DVIA-v2-master/DVIA-v2/DVIA-v2/Home/DeviceInfo.m:51 Confirmed

DVIA-v2-master/DVIA-v2/Pods/Bolts/Bolts/Common/BFTask.m:20#21 Confirmed

release call in dealloc method is missed Objective-C 2
DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/Relationships/YapDatabaseRelationshipConnection.m:67 Confirmed

DVIA-v2-master/DVIA-v2/DVIA-v2/Vendor/YapDatabase/Utilities/YapCache.m:113 Confirmed

Low-level vulnerabilities 0

Info-level vulnerabilities 0

13* Rejected vulnerabilities are not taken into account

Report DVIA-v2-master.zip

Analysis Results

Unsafe SSL settings (Config files)V5

Description

The application establishes the SSL connection with insecure settings.
To establish a secure connection the application must verify that the certificate corresponds to the requested
host, the certificate term has not expired, and that the chain of trust goes back to one of the set in the system
trusted root certificates. Disabling any of these checks may lead to compromise of transferred data.
Insecure Communication takes the third place in the “OWASP Mobile Top 10 2016” mobile platforms
vulnerabilities ranking.

Example

The following example shows a code fragment from the Info.plist file in which
developer explicitly discards App Transport Security by adding the <true/> value in
<key>NSAllowsArbitraryLoads</key>:
<key>NSAppTransportSecurity</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
</dict>
Using the connection without checking the certificate for the data transfer leads to its
compromise.

Recommendations

 • Check the certificate completely when establishing a connection via SSL / TLS protocol.

Links

 1. CWE-295: Improper Certificate Validation
 2. OWASP Mobile Top 10 2014: Insufficient Transport Layer Protection
 3. Using Networking Securely - developer.apple.com
 4. OWASP Mobile Top 10 2016-M3-Insecure Communication

14

https://cwe.mitre.org/data/definitions/295.html
https://owasp.org/www-project-mobile-top-10/2014-risks/m3-insufficient-transport-layer-protection
https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/SecureNetworking/SecureNetworking.html
https://owasp.org/www-project-mobile-top-10/2016-risks/m3-insecure-communication

Report DVIA-v2-master.zip

Vulnerability Entries

DVIA-v2-master/DVIA-v2/DVIA-v2/Info.plist:40

Level Critical

Status Confirmed

37 <key>NSAppTransportSecurity</key>
38 <dict>
39 <key>NSAllowsArbitraryLoads</key>

40 <true/>

41 </dict>
42 <key>NSCameraUsageDescription</key>
43 <string>To demonstrate the misuse of Camera, please grant it permission once.</string>

Unsafe SSL settings (Objective-C)V5

Description

The application establishes the SSL connection with insecure settings.
To establish a secure connection the application must verify that the certificate corresponds to the requested
host, the certificate term has not expired, and that the chain of trust goes back to one of the set in the system
trusted root certificates. Disabling any of these checks may lead to compromise of transferred data.
Insecure Communication takes the third place in the “OWASP Mobile Top 10 2016” mobile platforms
vulnerabilities ranking.

Example

In the following example, the application creates a query disabling certificate check:
[NSURLRequest setAllowsAnyHTTPSCertificate:YES forHost:[[NSURL URLWithString:
url] host]];
Using the connection without checking the certificate for the data transfer leads to its
compromise.

Recommendations

 • Check the certificate completely when establishing a connection via SSL / TLS protocol.
15

Report DVIA-v2-master.zip

Links

 1. CWE-295: Improper Certificate Validation
 2. OWASP Mobile Top 10 2014: Insufficient Transport Layer Protection
 3. Using Networking Securely - developer.apple.com
 4. OWASP Mobile Top 10 2016-M3-Insecure Communication

Vulnerability Entries

DVIA-v2-master/DVIA-v2/Pods/Realm/Realm/RLMAnalytics.mm:240

Level Critical

Status Confirmed

237
238 // No error handling or anything because logging errors annoyed people for no
239 // real benefit, and it's not clear what else we could do

240 [[NSURLSession.sharedSession dataTaskWithURL:[NSURL URLWithString:url]] resume];

241 }
242
243 #else

Weak hashing algorithm (Objective-C)V3

Description

The used hash function is insecure. Its use can lead to a data confidentiality loss.
The MD2, MD5, SHA1 hash functions have known vulnerabilities. Finding collisions for MD2 and MD5 functions
does not require substantial resources; a similar problem for SHA1 was solved. If these functions are used to
store valuable information (such as passwords), its confidentiality can be violated.
The hash function used to store passwords not only should be resistant to collisions but also should not be too
fast. This complicates the attack by exhaustive search. For this purpose specialized hash functions have been
developed: bcrypt, scrypt.
Suppose that user passwords are stored on the server in encrypted form with the use of insecure hash function
(e.g., MD5). A possible attack scenario:

 1. The attacker gets access to the encrypted passwords.
 2. An attacker exploits a vulnerability of hashing algorithm and calculates the string for which the hash
algorithm gives the same value as for the user’s password.
 3. The attacker passes the authentication using a calculated string.

16

https://cwe.mitre.org/data/definitions/295.html
https://owasp.org/www-project-mobile-top-10/2014-risks/m3-insufficient-transport-layer-protection
https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/SecureNetworking/SecureNetworking.html
https://owasp.org/www-project-mobile-top-10/2016-risks/m3-insecure-communication

Report DVIA-v2-master.zip

Insufficient Cryptography vulnerabilities take the fifth place in the “OWASP Top 10 2016” mobile application
vulnerabilities ranking.

Example

In the following example, a value of the insecure MD5 hash function (CommonCrypto
library) is calculated:
+ (NSString *)md5HexDigest:(NSString *)plainText {
 const char* str = [plainText UTF8String];
 unsigned char result[CC_MD5_DIGEST_LENGTH] ;
 CC_MD5(str, strlen(str), result);
 CC_MD5_DIGEST_LENGTH=16,
 NSMutableString *ret = [NSMutableString stringWithCapacity:
CC_MD5_DIGEST_LENGTH * 2];

 for (int i = 0; i < CC_MD5_DIGEST_LENGTH; i++) {
 [ret appendFormat:@"%02x", result[i]];
 }
 return ret;
}

Recommendations

 • Use secure hash functions (SHA-2).
 • For hashing passwords use specialized hash functions (bcrypt, scrypt) and salt
obtained from a cryptographically resistant PRNG (pseudorandom number generators).

Links

 1. Mobile Top 10 2016-M5-Insufficient Cryptography
 2. OWASP Top 10 2013-A6-Sensitive Data Exposure
 3. OWASP: Top 10 2010-A7-Insecure Cryptographic Storage
 4. CWE-326: Inadequate Encryption Strength
 5. NIST Approved Algorithms
 6. How to securely hash passwords - Thomas Pornin / stackoverflow.com
 7. MD5 considered harmful today. Creating a rogue CA certificate - Alexander Sotirov, Marc Stevens, Jacob
Appelbaum, Arjen Lenstra, David Molnar, Dag Arne Osvik, Benne de Weger / win.tue.nl
 8. Encrypting and Hashing Data - developer.apple.com
 9. CWE-328
 10. Bleichenbacher’s attack

17

https://owasp.org/www-project-mobile-top-10/2016-risks/m5-insufficient-cryptography
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2010.pdf
https://cwe.mitre.org/data/definitions/326.html
https://csrc.nist.gov/projects/hash-functions
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords/31846#31846
https://www.win.tue.nl/hashclash/rogue-ca/
https://www.win.tue.nl/hashclash/rogue-ca/
https://developer.apple.com/library/archive/documentation/Security/Conceptual/cryptoservices/GeneralPurposeCrypto/GeneralPurposeCrypto.html
https://cwe.mitre.org/data/definitions/328.html
https://asecuritysite.com/encryption/c_c3

Report DVIA-v2-master.zip

Vulnerability Entries

DVIA-v2-master/DVIA-v2/DVIA-v2/Vendor/RNCryptor/RNOpenSSLCryptor.m:60

Level Critical

Status Confirmed

57
58 NSMutableData *hashMaterial = [NSMutableData dataWithData:hash];
59 [hashMaterial appendData:passwordSalt];

60 CC_MD5([hashMaterial bytes], (CC_LONG)[hashMaterial length], md);

61
62 return [NSData dataWithBytes:md length:sizeof(md)];
63 }

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/CloudKit/YapDatabaseCloudKitTransaction.m:
1033

Level Critical

Status Confirmed

1030 buffer = malloc((size_t)maxLen);
1031
1032 CC_SHA1_CTX ctx;

1033 CC_SHA1_Init(&ctx);

1034
1035 NSUInteger used = 0;
1036

Hardcoded password (Swift)V2

18

Report DVIA-v2-master.zip

Description

Password is hardcoded. This may lead to an application data compromise.
Eliminating security risks related to hardcoded passwords is extremely difficult. These passwords are at least
accessible to every developer of the application. Moreover, after the application is installed, removing password
from its code is possible only via an update. Constant strings are easily extracted from the compiled application
by decompilers. Therefore, an attacker does not necessarily need to have an access to the source code to know
the parameters of the special account. If these parameters become known to an attacker, system
administrators will be forced either to neglect the safety, or to restrict the access to the application.
In case of a mobile application, security threat is even higher, considering the risk of the device loss.

Example

In the following example, the variable Password is defined, the value of which is
explicitly indicated in the code:
var Password = "password"

Recommendations

 • Store not passwords but values of cryptographically secure hash function from the
password. Use specialized hash functions designed for this purpose. Use salt obtained
from cryptographically secure pseudorandom number generator to resist attacks which use
rainbow tables.
 • If the hardcoded password is used for the initial authorization, provide the special
authentication mode for this purpose in which the user is required to provide his/her own
unique password.
 • Store authentication information in an encrypted form in a separate configuration file or
in a database. Secure the encryption key. If encryption is not possible, limit the access to
the repository as much as possible.

Links

 1. Use of hard-coded password
 2. CWE-259: Use of Hard-coded Password
 3. OWASP Top 10 2013-A5-Security Misconfiguration
 4. OWASP Top 10 2013-A6-Sensitive Data Exposure
 5. How to securely hash passwords? - security.stackexchange.com
 6. OWASP Mobile Top 10 2016-M4-Insecure Authentication
 7. CWE-798: Use of Hard-coded Credentials

19

https://owasp.org/www-community/vulnerabilities/Use_of_hard-coded_password
https://cwe.mitre.org/data/definitions/259.html
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://owasp.org/www-project-mobile-top-10/2016-risks/m4-insecure-authentication
https://cwe.mitre.org/data/definitions/798.html

Report DVIA-v2-master.zip

Vulnerability Entries

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Sensitive Information in
Memory/Controller/SensitiveInformationInMemoryDetailsViewController.swift:19

Level Critical

Status Confirmed

16
17 class SensitiveInformationInMemoryDetailsViewController: UIViewController {
18 let username = "edhillary"

19 let password = "ev8848@1953"

20 override func viewDidLoad() {
21 super.viewDidLoad()
22 self.navigationItem.title = "Sensitive Information in Memory"

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Sensitive Information in
Memory/Controller/SensitiveInformationInMemoryDetailsViewController.swift:32

Level Critical

Status Confirmed

29 }
30
31 func initializeIVars(){

32 let passwd = "tenzinnorgay"

33 let concatenated = username + passwd + password
34 }
35

Lack of dealloc method (Objective-C)V7

20

Report DVIA-v2-master.zip

Description

There is no dealloc method in the class when ARC is disabled. This may cause a memory leak.
The dealloc method frees the memory occupied by the object. This method is automatically called just before
the object is deallocated or any of its instance variables are destroyed. When ARC is disabled, you need to add
the method dealloc in the implementation of the class, which correctly frees the instance variables. When using
ARC, instance variables are destroyed automatically, but it is necessary to override dealloc in order to, for
example, remove an object from other services and managers to which it is subscribed, invalidate timers, as
well as to release non-Objective-C objects.

Example

In the following example, there is no dealloc method:
@interface MyObject : NSObject {
 id _ivar;
}
@end

@implementation MyObject // warn: lacks 'dealloc'
@end

Recommendations

 • Free the object after the completion of all operations with it.
 • Always override dealloc when ARC is disabled.

Links

 1. CWE-401: Improper Release of Memory Before Removing Last Reference (‘Memory Leak’)
 2. Mobile Top 10 2016-M7-Poor Code Quality
 3. dealloc

Vulnerability Entries

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/CloudKit/Internal/YDBCKChangeQueue.m:15

Level Medium

Status Confirmed

21

https://cwe.mitre.org/data/definitions/401.html
https://owasp.org/www-project-mobile-top-10/2016-risks/m7-client-code-quality
https://developer.apple.com/documentation/objectivec/nsobject/1571947-dealloc

Report DVIA-v2-master.zip

12 @property (atomic, readwrite, strong) NSString *lockUUID;
13 @end
14

15 @implementation YDBCKChangeQueue

16 {
17 BOOL isMasterQueue;
18 NSLock *masterQueueLock;

Trace

@implementation YDBCKChangeQueue

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/CloudKit/Internal/YDBCKChangeQueue.m:15

12 @property (atomic, readwrite, strong) NSString *lockUUID;
13 @end
14

15 @implementation YDBCKChangeQueue

16 {
17 BOOL isMasterQueue;
18 NSLock *masterQueueLock;

@implementation YDBCKChangeQueue

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/CloudKit/Internal/YDBCKChangeQueue.m:15

12 @property (atomic, readwrite, strong) NSString *lockUUID;
13 @end
14

15 @implementation YDBCKChangeQueue

16 {
17 BOOL isMasterQueue;
18 NSLock *masterQueueLock;

22

Report DVIA-v2-master.zip

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/CloudKit/YapDatabaseCloudKitOptions.m:3

Level Medium

Status Confirmed

1 #import "YapDatabaseCloudKitOptions.h"
2

3 @implementation YapDatabaseCloudKitOptions

4
5 @synthesize allowedCollections = allowedCollections;
6

Trace

@implementation YapDatabaseCloudKitOptions

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/CloudKit/YapDatabaseCloudKitOptions.m:3

1 #import "YapDatabaseCloudKitOptions.h"
2

3 @implementation YapDatabaseCloudKitOptions

4
5 @synthesize allowedCollections = allowedCollections;
6

@implementation YapDatabaseCloudKitOptions

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/CloudKit/YapDatabaseCloudKitOptions.m:3

1 #import "YapDatabaseCloudKitOptions.h"

23

Report DVIA-v2-master.zip

2

3 @implementation YapDatabaseCloudKitOptions

4
5 @synthesize allowedCollections = allowedCollections;
6

Memory leak (Objective-C)V7

Description

The application allows incorrect work with memory. Some errors related to memory management: no release of
allocated memory (memory leak), double memory allocation, the use of the wrong class to free memory.
Objective C language is based on C and involves working with memory at a relatively low level. The developer
must allocate memory for the structures used and release it correctly after the end of the work. Otherwise,
memory available for the application will decrease, eventually causing malfunction of the application.

Example

In the following example, the application does not release the allocated memory (the
SecKeychainItemFreeContent call is missing):
void errRetVal() {
 unsigned int *ptr = 0;
 OSStatus st = 0;
 UInt32 length;
 void *outData;
 st = SecKeychainItemCopyContent(2, ptr, ptr, &length, &outData);
 if (st == GenericError)
 SecKeychainItemFreeContent(ptr, outData);
}

Recommendations

 • Free the allocated memory correctly.
 • Check the documentation of methods of work with memory.

24

Report DVIA-v2-master.zip

Links

 1. Keychain Services Reference - developer.apple.com
 2. About Memory Management - developer.apple.com
 3. Mobile Top 10 2016-M7-Poor Code Quality

Vulnerability Entries

DVIA-v2-master/DVIA-v2/DVIA-v2/Home/DeviceInfo.m:77

Level Medium

Status Confirmed

74
75 NSLog(@"wifi info: bssid: %@, ssid:%@, ssidData: %@", info[@"BSSID"], info[@"SSID"], info
[@"SSIDDATA"]);
76 }

77 return [NSString stringWithFormat:@"Sysname: %s\nNodename: %s\nRelease: %s\nVersion: %
s\nMachine: %s\nMemory in use (in MB): %f\nPID: %d\n", u.sysname,u.nodename,u.release,u.
version,u.machine,((CG...

78
79 }
80

Trace

kerr == KERN_SUCCESS

DVIA-v2-master/DVIA-v2/DVIA-v2/Home/DeviceInfo.m:49

46 TASK_BASIC_INFO,
47 (task_info_t)&info,
48 &size);

49 if(kerr == KERN_SUCCESS) {

50
51 NSLog(@"Memory in use (in MB): %f", ((CGFloat)info.resident_size / 1000000));
52 } else {

25

https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt.html
https://owasp.org/www-project-mobile-top-10/2016-risks/m7-client-code-quality

Report DVIA-v2-master.zip

return [NSString stringWithFormat:@"Sysname: %
s\nNodename: %s\nRelease: %s\nVersion: %
s\nMachine: %s\nMemory in use (in MB): %
f\nPID: %d\n", u.sysname,u.nodename,u.release,
u.version,u.machine,((CGFloat)info.resident_size
/ 1000000),getpid()]

DVIA-v2-master/DVIA-v2/DVIA-v2/Home/DeviceInfo.m:77

74
75 NSLog(@"wifi info: bssid: %@, ssid:%@, ssidData: %@", info[@"BSSID"], info[@"SSID"],
info[@"SSIDDATA"]);
76 }

77 return [NSString stringWithFormat:@"Sysname: %s\nNodename: %s\nRelease: %
s\nVersion: %s\nMachine: %s\nMemory in use (in MB): %f\nPID: %d\n", u.sysname,u.
nodename,u.release,u.version,u.machine,((CG...

78
79 }
80

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/PDKeychainBindings/PDKeychainBindingsController.m:58

Level Medium

Status Confirmed

55 CFRelease(stringData);
56 #else //OSX
57 NSString *string = [[NSString alloc] initWithBytes:stringBuffer length:stringLength encoding:
NSUTF8StringEncoding];

58 SecKeychainItemFreeAttributesAndData(NULL, stringBuffer);

59 #endif
60 return string;
61 }

26

Report DVIA-v2-master.zip

Trace

&stringBuffer

DVIA-v2-master/DVIA-v2/DVIA-v2/Vendor/PDKeychainBindings/PDKeychainBindingsController.m:49

46 void *stringBuffer;
47 status = SecKeychainFindGenericPassword(NULL, (uint) [[self serviceName]
lengthOfBytesUsingEncoding:NSUTF8StringEncoding], [[self serviceName] UTF8String],
48 (uint) [key lengthOfBytesUsingEncoding:NSUTF8StringEncoding],
[key UTF8String],

49 &stringLength, &stringBuffer, NULL);

50 #endif
51 if(status) return nil;
52

SecKeychainItemFreeAttributesAndData(NULL,
stringBuffer)

DVIA-v2-master/DVIA-v2/DVIA-v2/Vendor/PDKeychainBindings/PDKeychainBindingsController.m:58

55 CFRelease(stringData);
56 #else //OSX
57 NSString *string = [[NSString alloc] initWithBytes:stringBuffer length:stringLength
encoding:NSUTF8StringEncoding];

58 SecKeychainItemFreeAttributesAndData(NULL, stringBuffer);

59 #endif
60 return string;
61 }

NSLog usage (Objective-C)V7

Description

The application uses an NSLog method. This method is used for debugging and not supposed to be left in a
release version of an application. All messages generated by NSLog can be read using XCode, leaving a
possibility of unnecessary information disclosure. Extensive use of NSLog can also significantly slows down the
application.

27

Report DVIA-v2-master.zip

In some cases, using NSLog on the jailbroken device may lead to redirecting output NSLog to syslog. So
developers should avoid using NSLog for logging sensitive or system information.

Example

In the following example, the application logges previously saved login and password:
NSLog(@"Login: %@, Password: %@", login, password);

Recommendations

 • Disable NSLog in release versions using preprocessor macros.

Links

 1. Stackoverflow: Do I need to disable NSLog before release Application?
 2. Mobile Top 10 2016-M7-Poor Code Quality

Vulnerability Entries

DVIA-v2-master/DVIA-v2/DVIA-v2/Home/DeviceInfo.m:51

Level Medium

Status Confirmed

48 &size);
49 if(kerr == KERN_SUCCESS) {
50

51 NSLog(@"Memory in use (in MB): %f", ((CGFloat)info.resident_size / 1000000));

52 } else {
53 NSLog(@"Error with task_info(): %s", mach_error_string(kerr));
54 }

DVIA-v2-master/DVIA-v2/Pods/Bolts/Bolts/Common/BFTask.m:20#21

Level Medium

Status Confirmed

28

https://stackoverflow.com/questions/2025471/do-i-need-to-disable-nslog-before-release-application
https://owasp.org/www-project-mobile-top-10/2016-risks/m7-client-code-quality

Report DVIA-v2-master.zip

17 NS_ASSUME_NONNULL_BEGIN
18
19 __attribute__ ((noinline)) void warnBlockingOperationOnMainThread() {

20 NSLog(@"Warning: A long-running operation is being executed on the main thread. \n"
21 " Break on warnBlockingOperationOnMainThread() to debug.");

22 }
23
24 NSString *const BFTaskErrorDomain = @"bolts";

release call in dealloc method is missed (Objective-C)V7

Description

dealloc method is implemented incorrectly in the application. An instance variable was retained by the
synthesized property, but was not freed (lack of release method call). This may cause a memory leak.
The dealloc method frees the memory occupied by the object. This method is automatically called just before
the object is deallocated or any of its instance variables are destroyed. When ARC is disabled, you need to add
the method dealloc in the implementation of the class, which correctly frees the instance variables. When using
ARC, instance variables are destroyed automatically, but it is necessary to override dealloc in order to, for
example, remove an object from other services and managers to which it is subscribed, invalidate timers, as
well as to release non-Objective-C objects.

Example

In the following example, instance variable was retained by the synthesized property,
but was not freed:
@interface MyObject : NSObject {
 id _myproperty;
}
@property(retain) id myproperty;
@end

@implementation MyObject
@synthesize myproperty = _myproperty;
 // warn: var was retained but wasn't released
- (void)dealloc {
 [super dealloc];
}

29

Report DVIA-v2-master.zip

@end

Recommendations

 • Free the object after the completion of all operations with it.
 • Do not use the object after releasing it.

Links

 1. CWE-401: Improper Release of Memory Before Removing Last Reference (‘Memory Leak’)
 2. Mobile Top 10 2016-M7-Poor Code Quality
 3. dealloc

Vulnerability Entries

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/Relationships/YapDatabaseRelationshipConne
ction.m:67

Level Medium

Status Confirmed

64 - (void)dealloc
65 {
66 [self _flushStatements];

67 }

68
69 - (void)_flushStatements
70 {

Trace

}

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/Relationships/YapDatabaseRelationshipConnection.m:67

64 - (void)dealloc
30

https://cwe.mitre.org/data/definitions/401.html
https://owasp.org/www-project-mobile-top-10/2016-risks/m7-client-code-quality
https://developer.apple.com/documentation/objectivec/nsobject/1571947-dealloc

Report DVIA-v2-master.zip

65 {
66 [self _flushStatements];

67 }

68
69 - (void)_flushStatements
70 {

}

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vendor/YapDatabase/Extensions/Relationships/YapDatabaseRelationshipConnection.m:67

64 - (void)dealloc
65 {
66 [self _flushStatements];

67 }

68
69 - (void)_flushStatements
70 {

DVIA-v2-master/DVIA-v2/DVIA-v2/Vendor/YapDatabase/Utilities/YapCache.m:113

Level Medium

Status Confirmed

110 - (void)dealloc
111 {
112 if (cfdict) CFRelease(cfdict);

113 }

114
115 - (NSUInteger)countLimit
116 {

31

Report DVIA-v2-master.zip

Trace

if (cfdict) CFRelease(cfdict)

DVIA-v2-master/DVIA-v2/DVIA-v2/Vendor/YapDatabase/Utilities/YapCache.m:112

109
110 - (void)dealloc
111 {

112 if (cfdict) CFRelease(cfdict);

113 }
114
115 - (NSUInteger)countLimit

}

DVIA-v2-master/DVIA-v2/DVIA-v2/Vendor/YapDatabase/Utilities/YapCache.m:113

110 - (void)dealloc
111 {
112 if (cfdict) CFRelease(cfdict);

113 }

114
115 - (NSUInteger)countLimit
116 {

Unsafe authentication (LocalAuthentication framework)
(Objective-C)

V7

Description

The application uses framework LocalAuthentication to authenticate the user. This framework doesn’t use
Secure Enclave and is prone to hooking on jailbroken devices.
Authentication contexts are used to evaluate authentication policies, allowing apps to request the user to
authenticate themselves using personal information such as a fingerprint registered with Touch ID. Touch ID
can be implemented in two ways: using the LocalAuthentication framework or using access control based on
the Touch ID in the Keychain service. Although both methods must be suitable for most applications,
LocalAuthentication has some characteristics that make it less secure for high-risk applications such as banking

32

Report DVIA-v2-master.zip

and insurance:

 • LocalAuthentication is determined outside the device’s Secure Enclave, which means that their APIs can be
connected and modified on jailbrocken devices.
 • LocalAuthentication verifies the authenticity of the user by evaluating the context policy that can be either
true or false. This logical assessment implies that the application can not be authenticated by anyone.
 • In addition, fingerprints that can be registered in the future will also be successfully evaluated as true.
An LAContext object represents an authentication context. The LAContext class provides a programmatic
interface for evaluating authentication policies and access controls, managing credentials, and invalidating
authentication contexts.
LAContext.evaluatePolicy does not successfully authenticate a user without the risk of other registered
fingerprints being used. It also poses the risk a malicious actor can steal or find a victim’s iOS device and has
the ability to bypass the TouchID used in other applications.
Insecure Authentication vulnerabilities take the fourth place in the “OWASP Top 10 2016” mobile application
vulnerabilities ranking.

Example

In the following example, the application uses LocalAuthentication framework to
authenticate user by fingerprint.
LAContext *myContext = [[LAContext alloc] init];
NSError *authError = nil;
NSString *myLocalizedReasonString = @"Authenticate using your finger";
if ([myContext canEvaluatePolicy:LAPolicyDeviceOwnerAuthenticationWithBiometrics
error:&authError]) {
 [myContext evaluatePolicy:LAPolicyDeviceOwnerAuthenticationWithBiometrics
 localizedReason:myLocalizedReasonString
 reply:^(BOOL) success, NSError *error) {
 if (success) {
 // fingerprint match
 } else {
 // fingerprint doesn't match
 }
 }];
} else {
 NSLog(@"Can not evaluate Touch ID");
}
Using the connection without checking the certificate for the data transfer leads to its
compromise.

33

Report DVIA-v2-master.zip

Recommendations

 • Use Touch ID based access controls in the Keychain service.

Links

 1. LocalAuthentication - developer.apple.com
 2. OWASP Mobile Top 10 2016-M1-Improper Platform Usage

Vulnerability Entries

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vulnerabilities/TouchIDBypass/Controller/TouchIDAuthentication.m:39

Level Medium

Status Confirmed

36
37 +(void)authenticateWithTouchID {
38

39 LAContext *myContext = [[LAContext alloc] init];

40 NSError *authError = nil;
41 NSString *myLocalizedReasonString = @"Please authenticate yourself";
42

DVIA-v2-master/DVIA-v2/DVIA-
v2/Vulnerabilities/TouchIDBypass/Controller/TouchIDAuthentication.m:39

Level Medium

Status Confirmed

36
37 +(void)authenticateWithTouchID {
38

39 LAContext *myContext = [[LAContext alloc] init];

34

https://developer.apple.com/documentation/localauthentication
https://owasp.org/www-project-mobile-top-10/2016-risks/m1-improper-platform-usage

Report DVIA-v2-master.zip

40 NSError *authError = nil;
41 NSString *myLocalizedReasonString = @"Please authenticate yourself";
42

Unsafe internal storage (Objective-C)V2

Description

Storing data in the app’s home directory is insecure. If it is necessary to store data in app’s home directory then
data should be stored in encrypted form. Besides, use secure encryption settings.
iOS allows developers to specify which data must be encrypted when writing to the file. It uses the Data
Protection API. The default mode is NSFileProtectionNone, in which the data is protected only by the basic
encryption based on the device UID-key. Thus, by default the data is stored insecurely and is available at boot
time or when the device is unlocked.
Possible values of constants that define the level of encryption are set for NSFileManager:

 • NSFileProtectionComplete
 • NSDataWritingFileProtectionComplete
 • NSFileProtectionCompleteUnlessOpen
 • NSDataWritingFileProtectionCompleteUnlessOpen
 • NSFileProtectionCompleteUntilFirstUserAuthentication
 • NSDataWritingFileProtectionCompleteUntilFirstUserAuthentication
 • NSFileProtectionNone
 • NSDataWritingFileProtectionNone

Example

In the following example, the application stores data without adequate protection:
filepath = [self.GetDocumentDirectory stringByAppendingPathComponent:self.
setFilename];
NSDictionary *protection = [NSDictionary dictionaryWithObject:NSFileProtectionNone
forKey:NSFileProtectionKey];
[[NSFileManager defaultManager] setAttributes:protection ofItemAtPath:filepath
error:nil];
BOOL ok = [testToWrite writeToFile:filepath atomically:YES encoding:
NSUnicodeStringEncoding error:&err];
Secure alternative:
filepath = [self.GetDocumentDirectory stringByAppendingPathComponent:self.
setFilename];
NSDictionary *protection = [NSDictionary dictionaryWithObject:

35

Report DVIA-v2-master.zip

NSFileProtectionComplete forKey:NSFileProtectionKey];
[[NSFileManager defaultManager] setAttributes:protection ofItemAtPath:filepath
error:nil];
BOOL ok = [testToWrite writeToFile:filepath atomically:YES encoding:
NSUnicodeStringEncoding error:&err];

Recommendations

 • When storing data, use only NSFileProtectionComplete and
NSDataWritingFileProtectionComplete.

Links

 1. OWASP Top 10 2013-A6-Sensitive Data Exposure
 2. CWE-359: Exposure of Private Information (‘Privacy Violation’)
 3. OWASP Mobile Top 10 2016-M2-Insecure Data Storage
 4. CWE-921: Storage of Sensitive Data in a Mechanism without Access Control

Vulnerability Entries

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Side Channel Data
Leakage/Controller/Objective-C Methods/SetSharedCookies.m:55

Level Medium

Status Confirmed

52 };
53 NSHTTPCookie *passwordCookie = [[NSHTTPCookie alloc] initWithProperties:
passwordProperties];
54

55 [[NSHTTPCookieStorage sharedHTTPCookieStorage] setCookies:@[usernameCookie,
passwordCookie] forURL:siteURL mainDocumentURL:nil];

56 }
57
58 @end

36

https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://cwe.mitre.org/data/definitions/359.html
https://owasp.org/www-project-mobile-top-10/2016-risks/m2-insecure-data-storage
https://cwe.mitre.org/data/definitions/921.html

Report DVIA-v2-master.zip

DVIA-v2-master/DVIA-v2/Pods/Realm/Realm/RLMAnalytics.mm:240

Level Medium

Status Confirmed

237
238 // No error handling or anything because logging errors annoyed people for no
239 // real benefit, and it's not clear what else we could do

240 [[NSURLSession.sharedSession dataTaskWithURL:[NSURL URLWithString:url]] resume];

241 }
242
243 #else

Weak random number generator (Objective-C)V3

Description

Used pseudorandom number generator (PRNG) is not secure since it generates predictable sequences. This can
be exploited to bypass authentication and hijack the user’s session, as well as to carry out the DNS cache
poisoning attack.
PRNGs generate number sequences based on the initial value of the seed. There are two types of PRNG:
statistical and cryptographic. Statistical PRNGs generate predictable sequences, which are similar to random
according to the statistical characteristics. They may not be used for security purposes. The result of the
cryptographic PRNG, on the contrary, is impossible to predict if the value of seed is derived from a source with
high entropy. The value of the current time has a small entropy and is also insecure as a seed.
Insufficient Cryptography vulnerabilities take the fifth place in the “OWASP Top 10 2016” mobile application
vulnerabilities ranking.

Example

In the following example, the application generates a predictable sequence of
pseudorandom numbers:
#include <stdlib.h>
int r = rand() % N // in range 0 to N-1
The random(), arc4random(), arc4random_uniform(), and srandom() methods are also
cryptographically insecure.
It is recommended to use the data from the dev/random file (system entropy source):
FILE *fp = fopen("/dev/random", "r");

37

Report DVIA-v2-master.zip

if (!fp) {
 perror("randgetter");
 exit(-1);
}

uint64_t value = 0;
int i;
for (i=0; i<sizeof(value); i++) {
 value <<= 8;
 value |= fgetc(fp);
}

fclose(fp);

Recommendations

 • Use cryptographic PRNG to generate pseudo-random numbers for information security
purposes.
 • Use sources of high entropy to generate a seed for PRNG.

Links

 1. OWASP: Insecure randomness
 2. CWE-330: Use of Insufficiently Random Values
 3. CERT: MSC02-J. Generate strong random numbers
 4. Generating Random Numbers - developer.apple.com
 5. Mobile Top 10 2016-M5-Insufficient Cryptography
 6. CWE-338

Vulnerability Entries

DVIA-v2-master/DVIA-
v2/Pods/Parse/Parse/Parse/Internal/Commands/CommandRunner/URLSession/PF
URLSessionCommandRunner.m:223

Level Medium

Status Confirmed

38

https://owasp.org/www-community/vulnerabilities/Insecure_Randomness
https://cwe.mitre.org/data/definitions/330.html
https://wiki.sei.cmu.edu/confluence/display/java/MSC02-J.+Generate+strong+random+numbers
https://developer.apple.com/library/archive/documentation/Security/Conceptual/cryptoservices/RandomNumberGenerationAPIs/RandomNumberGenerationAPIs.html
https://owasp.org/www-project-mobile-top-10/2016-risks/m5-insufficient-cryptography
https://cwe.mitre.org/data/definitions/338.html

Report DVIA-v2-master.zip

220 // Set the initial delay to something between 1 and 2 seconds. We want it to be
221 // random so that clients that fail simultaneously don't retry on simultaneous
222 // intervals.

223 delay += self.initialRetryDelay * ((double)(arc4random() & 0x0FFFF) / (double)0x0FFFF);

224 return [self _performCommandRunningBlock:block
225 withCancellationToken:cancellationToken
226 delay:delay

DVIA-v2-master/DVIA-
v2/Pods/Parse/Parse/Parse/Internal/Object/LocalIdStore/PFObjectLocalIdStore.m:
198

Level Medium

Status Confirmed

195
196 // Start by generating a number. It will be the localId as a base-52 number.
197 // It has to be a uint64_t because log256(52^10) ~= 7.13 bytes.

198 uint64_t localIdNumber = (((uint64_t)arc4random()) << 32) | ((uint64_t)arc4random());

199 NSString *localId = [NSString stringWithFormat:@"local_%016llx", localIdNumber];
200
201 PFConsistencyAssert([[self class] isLocalId:localId], @"Generated an invalid local id: \"%@\".",
localId);

Cookie: transmission not over SSL (Swift)V5

Description

The application creates cookies without setting the secure flag to true This allows to transfer cookies in clear
text over HTTP, which can violate their confidentiality.
Sensitive Data Exposure vulnerabilities take the third place in the “OWASP Top 10 2017” web-application
vulnerabilities ranking.

39

Report DVIA-v2-master.zip

Example

In the following example, the application creates cookies without the secure flag:
let cookie = HTTPCookie(properties: [
 .domain: "www.test.com",
 .path: "/some_path",
 .name: "some_name",
 .value: "some_value",
])
If the application uses both HTTPS and HTTP, then in the absence of the secure flag
cookies that were created within HTTPS request will be transferred in unencrypted
form in subsequent HTTP requests, which may compromise the application. This is
particularly dangerous if the cookies contain valuable data, in particular the session
identifier.

Recommendations

 • Set the secure flag when creating cookies.
let cookie = HTTPCookie(properties: [.domain: “www.test.com”, .path: “/some_path”, .
name: “some_name”, .value: “some_value”, .secure: “true”])

Links

 1. OWASP Top 10 2013-A5-Security Misconfiguration
 2. OWASP Top 10 2017-A2-Broken Authentication
 3. CWE-614: Sensitive Cookie in HTTPS Session Without ‘Secure’ Attribute
 4. CWE-1028: Broken Authentication

Vulnerability Entries

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Side Channel Data
Leakage/Controller/CookiesViewController.swift:67#71

Level Medium

Status Confirmed

40

https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A2-Broken_Authentication
https://cwe.mitre.org/data/definitions/614.html
https://cwe.mitre.org/data/definitions/1028.html

Report DVIA-v2-master.zip

64
65 guard let siteUrl = URL(string: SiteURLString) else { return }
66

67 let usernameProperties: [HTTPCookiePropertyKey : Any] = [.domain: siteUrl.host ?? "",
68 .path: siteUrl.path,
69 .name: "username",
70 .value: CookieUsername,
71 .expires: expireInterval!]

72 guard let usernameCookie = HTTPCookie(properties: usernameProperties) else {return}
73
74 let passwordProperties: [HTTPCookiePropertyKey: Any] = [.domain: siteUrl.host ?? "",

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Side Channel Data
Leakage/Controller/CookiesViewController.swift:74#78

Level Medium

Status Confirmed

71 .expires: expireInterval!]
72 guard let usernameCookie = HTTPCookie(properties: usernameProperties) else {return}
73

74 let passwordProperties: [HTTPCookiePropertyKey: Any] = [.domain: siteUrl.host ?? "",
75 .path: siteUrl.path,
76 .name: "password",
77 .value: CookiePassword,
78 .expires: expireInterval!]

79 guard let passwordCookie = HTTPCookie(properties: passwordProperties) else {return}
80
81 HTTPCookieStorage.shared.setCookies([usernameCookie, passwordCookie], for: siteUrl,
mainDocumentURL: nil)

External storage usage (Swift)V2

41

Report DVIA-v2-master.zip

Description

The application writes data to an external storage device.
Files written to external storage device are readable by all applications and can be changed. Besides, files
stored in external storage will remain there even after the application is deleted. This can lead to a valuable
data confidentiality loss.

Example

In the following example, the application writes file to documents directory:
guard let directory = FileManager.default.urls(for: .documentDirectory, in: .
userDomainMask).first else { return }
let fileURL = directory.appendingPathComponent(file)
text.write(to: fileURL, atomically: false, encoding: .utf8)

Recommendations

 • Store files in the internal memory, then they will only be available to the application
that stored them.

Links

 1. Reading, Writing, and Deleting Files in Swift by Corey Davis
 2. OWASP: Insecure Storage
 3. CWE-250: Execution with Unnecessary Privileges
 4. CWE-921: Storage of Sensitive Data in a Mechanism without Access Control

Vulnerability Entries

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Broken
Cryptography/Controller/BrokenCryptographyDetailsViewController.swift:44

Level Medium

Status Confirmed

41 } else {
42 let data = passwordTextField.text?.data(using: String.Encoding.utf8)
43 let encryptedData = try? RNEncryptor.encryptData(data, with: kRNCryptorAES256Settings,
password: "@daloq3as$qweasdlasasjdnj")

44 try? encryptedData?.write(to: dataPath, options: .atomic)

42

https://medium.com/@CoreyWDavis/reading-writing-and-deleting-files-in-swift-197e886416b0
https://wiki.owasp.org/index.php/Insecure_Storage
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/921.html

Report DVIA-v2-master.zip

45 UserDefaults.standard.set(true, forKey: "loggedIn")
46 UserDefaults.standard.synchronize()
47 firstTimeUserView.isHidden = true

Trace

URL

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Broken
Cryptography/Controller/BrokenCryptographyDetailsViewController.swift:36

33 extension BrokenCryptographyDetailsViewController: UITextFieldDelegate {
34
35 func textFieldShouldReturn(_ textField: UITextField) -> Bool {

36 let dataPath = URL(fileURLWithPath: NSSearchPathForDirectoriesInDomains(.
documentDirectory, .userDomainMask, true).first!).appendingPathComponent("/secret-data").
absoluteURL

37 if textField == passwordTextField {
38 textField.resignFirstResponder()
39 if textField.text == nil {

dataPath

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Broken
Cryptography/Controller/BrokenCryptographyDetailsViewController.swift:44

41 } else {
42 let data = passwordTextField.text?.data(using: String.Encoding.utf8)
43 let encryptedData = try? RNEncryptor.encryptData(data, with: kRNCryptorAES256Settings,
password: "@daloq3as$qweasdlasasjdnj")

44 try? encryptedData?.write(to: dataPath, options: .atomic)

45 UserDefaults.standard.set(true, forKey: "loggedIn")
46 UserDefaults.standard.synchronize()
47 firstTimeUserView.isHidden = true

43

Report DVIA-v2-master.zip

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Broken
Cryptography/Controller/BrokenCryptographyPinDetailsViewController.swift:98

Level Medium

Status Confirmed

95 } else {
96 //First time user, save the encrypted data
97 print("encryptedData (SHA1): \(encryptedData! as NSData)")

98 try? encryptedData?.write(to: dataPath, options: .atomic)

99 UserDefaults.standard.set(true, forKey: "loggedIn")
100 UserDefaults.standard.synchronize()
101 firstTimeUserView.isHidden = true

Trace

URL

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Broken
Cryptography/Controller/BrokenCryptographyPinDetailsViewController.swift:89

86 let keyByteCount = 16
87 //Could be 100000 :/
88 let rounds = 500

89 let dataPath = URL(fileURLWithPath: NSSearchPathForDirectoriesInDomains(.
documentDirectory, .userDomainMask, true).first!).appendingPathComponent
("/v324dsa13qasd.enc").absoluteURL

90 let encryptedData = pbkdf2(password:textField.text!, salt:salt, keyByteCount:keyByteCount,
rounds:rounds)
91 if textField == passwordTextField {
92 textField.resignFirstResponder()

dataPath

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Broken
Cryptography/Controller/BrokenCryptographyPinDetailsViewController.swift:98

95 } else {
44

Report DVIA-v2-master.zip

96 //First time user, save the encrypted data
97 print("encryptedData (SHA1): \(encryptedData! as NSData)")

98 try? encryptedData?.write(to: dataPath, options: .atomic)

99 UserDefaults.standard.set(true, forKey: "loggedIn")
100 UserDefaults.standard.synchronize()
101 firstTimeUserView.isHidden = true

Keyboard caching (Swift)V2

Description

The identified text field does not disable the iOS keyboard caching mechanism, as a result any information
recently entered from the keyboard will be cached in order to improve the autocorrect feature.
iOS caches input to text fields in order to improve the performance of the autocorrect feature and predictive
typing. Any information entered into such a text field or other input control can be written to the keyboard cache
file stored in the file system. Since this file is stored on the device, then if device is lost, you can restore it and
reveal any confidential information contained in it.
Private data can enter a program in a variety of ways:

 • Directly from the user in the form of a password or personal information,
 • Accessed from a database,
 • From other database,
 • Indirectly from other fird party,
 • From the cloud storage (for instance, iCloud), including Address book, configuration files, archived
messages, snapped photos and etc.
Generally, the overall risk is associated with inappropriate reliance on the operating environment in which the
program runs. Storage of personal information in file systems, registries or other locally managed resources is
unacceptable.

Example

The following example shows that an application uses an input control designed to
collect confidential information:
//...
@IBOutlet weak var creditCardNum: UITextField!
//...

45

Report DVIA-v2-master.zip

Recommendations

 • Do not trust all persons with access to file resources.
 • Use different levels of access for different people when organizing data storage in file
systems.

Links

 1. Privacy Policy - Federal Trade Commission

Vulnerability Entries

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Broken
Cryptography/Controller/BrokenCryptographyDetailsViewController.swift:25

Level Medium

Status Confirmed

22 @IBOutlet var passwordTextField: UITextField!
23 @IBOutlet var returningUserView: UIView!
24 @IBOutlet var welcomeReturningUserLabel: UILabel!

25 @IBOutlet var returningUserPasswordTextField: UITextField!

26 @IBOutlet var loggedInLabel: UILabel!
27
28 override func viewDidLoad() {

DVIA-v2-master/DVIA-v2/DVIA-v2/Vulnerabilities/Transport Layer
Protection/Controller/TransportLayerProtectionViewController.swift:22

Level Medium

Status Confirmed

46

https://www.ftc.gov/policy-notices/privacy-policy

Report DVIA-v2-master.zip

19 class TransportLayerProtectionViewController: UIViewController {
20
21 @IBOutlet var cardNumberTextField: UITextField!

22 @IBOutlet var CVVTextField: UITextField!

23 @IBOutlet var nameOnCardTextField: UITextField!
24
25 //As per Apr 11, 2018 for example.com

47

Report DVIA-v2-master.zip

03
About OWASP
MASVS L1

MASVS L1 - List of general security controls for
mobile applications. An application that
complies with MASVS L1 complies with mobile
application security best practices. This level of
validation provides basic requirements in terms
of code quality, handling sensitive data, and
interoperability with the mobile environment.
This level is suitable for all mobile applications.

V1

Architecture, Design and Threat Modeling
Requirements
The category “V1” lists requirements pertaining
to architecture and design of the app. Besides
the technical controls, the MASVS requires
processes to be in place that ensure that the
security has been explicitly addressed when
planning the architecture of the mobile app, and
that the functional and security roles of all
components are known. Since most mobile
applications act as clients to remote services, it
must be ensured that appropriate security
standards are also applied to those services -
testing the mobile app in isolation is not
sufficient.

V2

Data Storage and Privacy Requirements
The protection of sensitive data, such as user
credentials and private information, is a key
focus in mobile security. Firstly, sensitive data
can be unintentionally exposed to other apps
running on the same device if operating system
mechanisms like IPC are used improperly. Data
may also unintentionally leak to cloud storage,
backups, or the keyboard cache. Additionally,
mobile devices can be lost or stolen more easily
compared to other types of devices, so an
adversary gaining physical access is a more
likely scenario. In that case, additional
protections can be implemented to make
retrieving the sensitive data more difficult.

V3

Cryptography Requirements
Cryptography is an essential ingredient when it
comes to protecting data stored on a mobile
device. The purpose of the controls in this
chapter is to ensure that the verified application
uses cryptography according to industry best
practices, including: Use of proven

V4

Authentication and Session Management
Requirements
In most cases, users logging into a remote
service is an integral part of the overall mobile
app architecture. Even though most of the logic
happens at the endpoint, MASVS defines some
basic requirements regarding how user accounts
and sessions are to be managed.

48

Report DVIA-v2-master.zip

cryptographic libraries; Proper choice and
configuration of cryptographic primitives; A
suitable random number generator wherever
randomness is required.

V5

Network Communication Requirements
The purpose of the controls listed in this section
is to ensure the confidentiality and integrity of
information exchanged between the mobile app
and remote service endpoints. At the very least,
a mobile app must set up a secure, encrypted
channel for network communication using the
TLS protocol with appropriate settings.

V6

Environmental Interaction Requirements
The controls in this group ensure that the app
uses platform APIs and standard components in
a secure manner. Additionally, the controls
cover communication between apps (IPC).

V7

Code Quality and Build Setting
Requirements
The goal of this control is to ensure that basic
security coding practices are followed in
developing the app, and that "free" security
features offered by the compiler are activated.

49

	1 Project Information
	Dynamics by vulnerabilities
	Scan History

	2 Scan Information 1/1 2024-09-04 10:09:22
	Scan Statistics
	Language Statistics
	Classification by OWASP MASVS L1
	Vulnerability List
	Analysis Results

	3 About OWASP MASVS L1

