
Analysis Results

BenchmarkJava-
master.zip

Report Date
2024-09-10 12:56:58
Report Author
admin
Classification Method
CWE/SANS Top 25 2023
Product Version
11.0-SNAPSHOT+f428841a
Rules Version
11-SNAPSHOT.130321

Confidentiality Note

Report BenchmarkJava-master.zip

This report is intended only for the person(s) or entity to which it is addressed
and contains confidential and privileged information. If you are not the
intended recipient, you must not view, use, copy, disclose, or otherwise
disseminate this report or any part of it. Doing so is strictly prohibited, and may
result in legal proceedings. If you received this in error, please notify the sender
immediately and destroy any copies of this information.

2

Report BenchmarkJava-master.zip

1 Project Information 4

Dynamics by vulnerabilities 5
Scan History 6

2 Scan Information 1/1 2024-09-04 09:42:42 7

Scan Statistics 7
Language Statistics 8
Classification by CWE/SANS Top 25 2023 9
Vulnerability List 11
Analysis Results 17

3 About CWE/SANS Top 25 2023 45

3

Report BenchmarkJava-master.zip

01
Project Information

BenchmarkJava-master.zip
Project Name

UUID
eb929e8d-12d7-47da-8402-bc205e3187f0

Project in DerScanner

4

https://10.208.64.152//projects/eb929e8d-12d7-47da-8402-bc205e3187f0/detailed_results

Report BenchmarkJava-master.zip

Dynamics by vulnerabilities
Vulnerabilities are divided by severity level: critical, medium, low and info.

CRITICAL LEVEL MEDIUM LEVEL LOW LEVEL INFORMATION

Likely to lead to
compromise
confidential data
and violation of
the integrity of
the system.

May be less
likely to lead to
compromising
confidential data
and violating the
integrity of the
system, or are
less serious
security

Can become a
potential
security risk.

Signal a violation
of good
programming
practice.

First of all, pay attention to vulnerabilities of critical and medium levels.

5

Report BenchmarkJava-master.zip

Dynamics by rating
The app score is calculated on a scale from 0 to 5. Score is calculated based on the number of critical
and medium level vulnerabilities. The impact of critical vulnerabilities is greater than that of medium
level vulnerabilities, and does not take into account the amount of code. Medium level vulnerabilities are
taken into account based on their frequency and total number of source code lines.

Scan History

Date and Time Status Languages Lines of
Code Number of Vulnerabilities

Critical Medium Low Info Total
Score

1/1 2024-09-04
09:42:42

completed Config files,
Java, Scala,

Kotlin,
VBScript,
HTML5,

JavaScript

3 568
828

1 166 36 043 4 332 5 918 47 459 0.0/5.0

6

Report BenchmarkJava-master.zip

02
Scan Information

1/1 2024-09-04 09:42:42
11-SNAPSHOT.130256

Scan Statistics

Status

Duration

Lines of Code

Score

Vulnerabilities

completed

0.0/5.0

0:42:31

3 568 828

Critical

1 166
Medium

36 043
Low

4 332
Info

5 918

Total

47 459

7

Report BenchmarkJava-master.zip

Language Status Duration Lines of Code
Number of Vulnerabilities

Critical Medium Low Info Total

Config files completed 0:02:59 3 049 523 0 29 066 4 0 29 070

JVM languages completed 0:31:44 283 640 1 134 4 820 4 315 5 915 16 184

VBScript completed 0:00:11 117 002 0 0 0 0 0

HTML5 completed 0:06:05 112 573 30 2 155 0 0 2 185

JavaScript completed 0:01:30 6 090 2 2 13 3 20

Language Statistics

Diagram of identified vulnerabilities

8

Report BenchmarkJava-master.zip

Vulnerability Types

Classification by CWE/SANS Top 25 2023

Vulnerabilities Occurrences
Critical Medium Low Info Total Critical Medium Low Info Total

1 0 0 0 0 0 0 0 0 0 0

2 3 0 1 0 4 603 0 1426 0 2029

3 1 1 1 0 1 232 158 54 0 444

9

Report BenchmarkJava-master.zip

Vulnerabilities Occurrences
Critical Medium Low Info Total Critical Medium Low Info Total

4 0 0 0 0 0 0 0 0 0 0

5 0 1 1 0 2 0 236 2 0 238

6 1 2 1 0 2 232 394 54 0 680

7 0 0 0 0 0 0 0 0 0 0

8 0 1 0 0 1 0 648 0 0 648

9 0 1 1 0 2 0 2155 3 0 2158

10 0 1 0 0 1 0 648 0 0 648

11 1 2 1 0 3 1 3 1 0 5

12 0 0 1 0 1 0 0 1 0 1

13 0 1 1 0 1 0 2 1 0 3

14 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0

16 0 1 0 0 1 0 236 0 0 236

17 0 0 0 0 0 0 0 0 0 0

18 0 3 0 0 3 0 15 0 0 15

19 0 0 0 0 0 0 0 0 0 0

20 0 1 0 0 1 0 1 0 0 1

21 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0

10

Report BenchmarkJava-master.zip

Vulnerability List

Vulnerabilities are displayed accordingly to
export settings: 16 selected

Actual: 16 of 47459

CWE-79 Improper Neutralization of Input During Web Page Generation (Cross-site
Scripting)

Critical vulnerabilities 4*

Reflected XSS Java 2
BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00013.
java:56 Confirmed

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00014.
java:56 Confirmed

Persistent XSS Java 2
BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00012.
java:78 Confirmed

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00021.
java:69 Confirmed

Medium-level vulnerabilities 0

Low-level vulnerabilities 0

Info-level vulnerabilities 0

CWE-89 Improper Neutralization of Special Elements used in an SQL Command (SQL
Injection)

Critical vulnerabilities 2*

SQL injection Java 2
BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00027.
java:52 Confirmed

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00018.
java:59 Confirmed

11* Rejected vulnerabilities are not taken into account

Report BenchmarkJava-master.zip

CWE-89 Improper Neutralization of Special Elements used in an SQL Command (SQL
Injection)

Medium-level vulnerabilities 0

Low-level vulnerabilities 0

Info-level vulnerabilities 0

CWE-78 Improper Neutralization of Special Elements used in an OS Command (OS
Command Injection)

Critical vulnerabilities 0

Medium-level vulnerabilities 2*

Command injection Java 2
BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00006.
java:66 Confirmed

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00007.
java:61 Confirmed

Low-level vulnerabilities 0

Info-level vulnerabilities 0

CWE-20 Improper Input Validation

Critical vulnerabilities 2*

SQL injection Java 2
BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00027.
java:52 Confirmed

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00018.
java:59 Confirmed

Medium-level vulnerabilities 2*

Command injection Java 2
BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00006.
java:66 Confirmed

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00007.
java:61 Confirmed

Low-level vulnerabilities 0

12* Rejected vulnerabilities are not taken into account

Report BenchmarkJava-master.zip

CWE-20 Improper Input Validation

Info-level vulnerabilities 0

CWE-22 Improper Limitation of a Pathname to a Restricted Directory (Path Traversal)

Critical vulnerabilities 0

Medium-level vulnerabilities 2*

Path manipulation Java 2
BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00001.
java:71 Confirmed

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00002.
java:72 Confirmed

Low-level vulnerabilities 0

Info-level vulnerabilities 0

CWE-352 Cross-Site Request Forgery (CSRF)

Critical vulnerabilities 0

Medium-level vulnerabilities 2*

Cross-site request forgery (CSRF) HTML5 2

BenchmarkJava-master/src/main/webapp/cmdi-00/BenchmarkTest00006.html:12 Confirmed

BenchmarkJava-master/src/main/webapp/cmdi-00/BenchmarkTest00007.html:12 Confirmed

Low-level vulnerabilities 0

Info-level vulnerabilities 0

CWE-434 Unrestricted Upload of File with Dangerous Type

Critical vulnerabilities 0

Medium-level vulnerabilities 2*

13* Rejected vulnerabilities are not taken into account

Report BenchmarkJava-master.zip

CWE-434 Unrestricted Upload of File with Dangerous Type

Medium-level vulnerabilities

Path manipulation Java 2
BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00001.
java:71 Confirmed

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00002.
java:72 Confirmed

Low-level vulnerabilities 0

Info-level vulnerabilities 0

CWE-862 Missing Authorization

Critical vulnerabilities 1*

Empty password Java 1

BenchmarkJava-master/src/main/java/org/owasp/benchmark/helpers/HibernateUtil.java:74 Confirmed

Medium-level vulnerabilities 1*

Missing authorization Java 1

BenchmarkJava-master/src/main/java/org/owasp/benchmark/helpers/HibernateUtil.java:74 Confirmed

Low-level vulnerabilities 0

Info-level vulnerabilities 0

CWE-476 NULL Pointer Dereference

Critical vulnerabilities 0

Medium-level vulnerabilities 0

Low-level vulnerabilities 0

Info-level vulnerabilities 0

14* Rejected vulnerabilities are not taken into account

Report BenchmarkJava-master.zip

CWE-287 Improper Authentication

Critical vulnerabilities 0

Medium-level vulnerabilities 0

Low-level vulnerabilities 0

Info-level vulnerabilities 0

CWE-77 Improper Neutralization of Special Elements used in a Command (Command
Injection)

Critical vulnerabilities 0

Medium-level vulnerabilities 2*

Command injection Java 2
BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00006.
java:66 Confirmed

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00007.
java:61 Confirmed

Low-level vulnerabilities 0

Info-level vulnerabilities 0

CWE-798 Use of Hard-coded Credentials

Critical vulnerabilities 0

Medium-level vulnerabilities 2*

Hardcoded password Java 2

BenchmarkJava-master/src/main/java/org/owasp/benchmark/helpers/HibernateUtil.java:154 Confirmed

BenchmarkJava-master/src/main/java/org/owasp/benchmark/helpers/LDAPServer.java:110 Confirmed

Low-level vulnerabilities 0

Info-level vulnerabilities 0

15* Rejected vulnerabilities are not taken into account

Report BenchmarkJava-master.zip

CWE-306 Missing Authentication for Critical Function

Critical vulnerabilities 0

Medium-level vulnerabilities 1*

Missing authorization Java 1

BenchmarkJava-master/src/main/java/org/owasp/benchmark/helpers/HibernateUtil.java:74 Confirmed

Low-level vulnerabilities 0

Info-level vulnerabilities 0

16* Rejected vulnerabilities are not taken into account

Report BenchmarkJava-master.zip

Analysis Results

Empty password (Java)CWE-250

Description

An empty password may lead to an application compromise.
Eliminating the security risks related to hardcoded empty passwords is extremely difficult. The information that
a certain account accepts an empty password is accessible to at least every developer of the application.
Moreover, after the application is installed, removing an empty password from its code is possible only via an
update. Constant strings are easily extracted from the compiled application by decompilers. Therefore, an
attacker does not necessarily need to have an access to the source code to know parameters of the special
account. If these parameters become known to an attacker, system administrators will be forced either to
neglect the safety, or to restrict the access to the application.

Example

In the following example, the connection to the database is established with an empty
password:
DriverManager.getConnection(url, "user", "");
The account that allows to enter with an empty password threatens the security of the
system. If the line given above is included into the final version of the application,
correcting the error without updating the code will not be possible.
In the following example, the password variable is initialized to an empty value, which
is then replaced by the value derived from the password storage and compared to the
value provided by the user:
String storedPassword = "";
String temp;

if ((temp = readPassword()) != null) {
 storedPassword = temp;
}

if(storedPassword.equals(userPassword))
 // Access protected resources
}

17

Report BenchmarkJava-master.zip

If the readPassword() method is unable to get the stored password (due to a database
error or for any other reason), the attacker will get access to protected resources by
providing an empty password.
In case of a mobile application, security threat is even higher, considering the risk of
the device loss.

Recommendations

 • Do not use empty passwords.
 • Store not passwords but values of cryptographically secure hash function from the
password. Use specialized hash functions designed for this purpose (bcrypt, scrypt). Use
salt obtained from cryptographically secure pseudorandom number generator to resist
attacks which use rainbow tables.
 • If the hardcoded password is used for the initial authorization, provide the special
authentication mode for this purpose in which the user is required to provide his/her own
unique password.
 • Store authentication information in an encrypted form in a separate configuration file or
in a database. Secure the encryption key. If encryption is not possible, limit the access to
the repository as much as possible.
 • For secure password storage on the platforms using the SQLite database (including
Android), use the SQLCipher extension.

Links

 1. Use of hard-coded password
 2. CWE-259: Use of Hard-coded Password
 3. OWASP Top 10 2017-A2-Broken Authentication
 4. OWASP Top 10 2013-A5-Security Misconfiguration
 5. OWASP Top 10 2013-A6-Sensitive Data Exposure
 6. Handling passwords used for auth in source code - stackoverflow.com
 7. How to securely hash passwords? - security.stackexchange.com
 8. CWE CATEGORY: OWASP Top Ten 2017 Category A2 - Broken Authentication
 9. CWE CATEGORY: OWASP Top Ten 2017 Category A6 - Security Misconfiguration

Vulnerability Entries

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/helpers/HibernateUtil.java:74

Level Critical

18

https://owasp.org/www-community/vulnerabilities/Use_of_hard-coded_password
https://cwe.mitre.org/data/definitions/259.html
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A2-Broken_Authentication
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://stackoverflow.com/questions/12937641/handling-passwords-used-for-auth-in-source-code
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://cwe.mitre.org/data/definitions/1028.html
https://cwe.mitre.org/data/definitions/1032.html

Report BenchmarkJava-master.zip

Status Confirmed

71 Class.forName("org.hsqldb.jdbcDriver");
72 // System.out.println("Driver Loaded.");
73 String url = "jdbc:hsqldb:benchmarkDataBase;sql.enforce_size=false";

74 conn = DriverManager.getConnection(url, "sa", "");

75 // System.out.println("Got Connection.");
76 st = conn.createStatement();
77 } catch (SQLException | ClassNotFoundException e) {

Persistent XSS (Java)CWE-78

Description

Persistent XSS or server XSS attack is possible.
Cross-site scripting is one of the most common types of attacks on web applications. XSS attacks take seventh
place in the “OWASP Top 10 2017” list of ten most significant vulnerabilities in web applications.
The main phase of any XSS attack is an imperceptible for the victim execution of a malicious code in the context
of the vulnerable application. For this purpose, the functionality of the client application (browser) is used that
allows to automatically execute scripts embedded in web page code. In most cases, these malicious scripts are
implemented in JavaScript.
Consequences of an XSS attack vary from violations of application functionality to complete loss of user data
confidentiality. The malicious code during the XSS attack can steal user HTTP-cookie, which gives an attacker
the ability to make requests to the server on behalf of the user.
OWASP suggests the following classification of XSS attacks:

 • Server type XSS occurs when data from an untrusted source is included in the response returned by the
server. The source of such data can be both user input and server database (where it had been previously
injected by an attacker who exploited vulnerabilities in the server-side application).
 • Client type XSS occurs when the raw data from the user input contains code that changes the Document
Object Model (DOM) of the web page received from the server. The source of such data can be both the DOM
and the data received from the server (e.g., in response to an AJAX request).
Typical server type attack scenario:

 1. Unvalidated data, usually from a HTTP request, gets into the server part of the application.
 2. The server dynamically generates a web page that contains the unvalidated data.
 3. In the process of generating a web page, server does not prevent the inclusion of an executable code that
can be executed in the client (browser), such as JavaScript code language, HTML-tags, HTML-attributes, Flash,
ActiveX, etc., in the page code.
 4. The victim’s client application displays the web page that contains the malicious code injected via data
from an untrusted source.
 5. Since malicious code is injected in the web page coming from the known server, the client part of the
application (browser) executes it with the rights set for the application.

19

Report BenchmarkJava-master.zip

 6. This violates the same-origin policy, according to which the code from the one source must not get an
access to resources from another source.
Client type attacks are executed in a similar way with the only difference that the malicious code is injected
during the phase of the client application work with the document object model received from the server.

Example

In the following example, the JSP code retrieves the information about the employee
with a given ID from the database and displays the his/her name:
<%...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
 rs.next();
 String name = rs.getString("name");
}
%>

Employee Name: <%= name %>
If the name values do not contain special characters, the code behaves correctly. But
if the name value is derived from data from an untrusted source (e.g., user input), the
attacker can store the malicious code in the database. Such attacks are particularly
dangerous because they may affect a large number of users.
Example for Scala application based on the Play framework: the raw method of the
play.templates.JavaExtensions class returns a text without template escaping.

Recommendations

 • Implement a validation mechanism. Whitelist is more secure but less flexible than the
blacklist. The blacklist must at least include the characters “&”, “<”, “>”, and quotation
marks.
 • Many web application servers provide their own mechanisms of protection against XSS,
but they may not be considered sufficient. There is no guarantee that the application will
run in conjunction with the server that updates these mechanisms timely and completely.

Links

 1. OWASP: Cross-site Scripting (XSS)
 2. CWE-79: Improper Neutralization of Input During Web Page Generation
 3. Types of Cross-Site Scripting - OWASP

20

https://owasp.org/www-community/attacks/xss/
https://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-community/Types_of_Cross-Site_Scripting

Report BenchmarkJava-master.zip

 4. OWASP: XSS Prevention Cheat Sheet
 5. OWASP Top 10-2017 A7-Cross-Site Scripting (XSS)
 6. CWE CATEGORY: OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure
 7. CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)
 8. CWE-81: Improper Neutralization of Script in an Error Message Web Page
 9. CWE-83: Improper Neutralization of Script in Attributes in a Web Page
 10. Cross-site Scripting (XSS) Affecting jquery-mobile package

Vulnerability Entries

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00012.java:
78

Level Critical

Status Confirmed

75 javax.naming.directory.Attribute attr2 = attrs.get("street");
76 if (attr != null) {
77 response.getWriter()

78 .println(

79 "LDAP query results:
"
80 + "Record found with name "
81 + attr.get()

Trace

InitialDirContext.search()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00012.java:68

65 (javax.naming.directory.InitialDirContext) ctx;
66 boolean found = false;
67 javax.naming.NamingEnumeration<javax.naming.directory.SearchResult> results =

68 idc.search(base, filter, filters, sc);

69 while (results.hasMore()) {
70 javax.naming.directory.SearchResult sr =
71 (javax.naming.directory.SearchResult) results.next();

21

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://cwe.mitre.org/data/definitions/1029.html
https://cwe.mitre.org/data/definitions/80.html
https://cwe.mitre.org/data/definitions/81.html
https://cwe.mitre.org/data/definitions/83.html
https://security.snyk.io/vuln/SNYK-JS-JQUERYMOBILE-174599

Report BenchmarkJava-master.zip

PrintWriter.println()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00012.java:78

75 javax.naming.directory.Attribute attr2 = attrs.get("street");
76 if (attr != null) {
77 response.getWriter()

78 .println(

79 "LDAP query results:
"
80 + "Record found with name "
81 + attr.get()

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00021.java:
69

Level Critical

Status Confirmed

66 javax.naming.directory.Attribute attr2 = attrs.get("street");
67 if (attr != null) {
68 response.getWriter()

69 .println(

70 "LDAP query results:
"
71 + "Record found with name "
72 + attr.get()

Trace

DirContext.search()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00021.java:59

56 // System.out.println("Filter " + filter);
57 boolean found = false;
58 javax.naming.NamingEnumeration<javax.naming.directory.SearchResult> results =

22

Report BenchmarkJava-master.zip

59 ctx.search(base, filter, filters, sc);

60 while (results.hasMore()) {
61 javax.naming.directory.SearchResult sr =
62 (javax.naming.directory.SearchResult) results.next();

PrintWriter.println()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00021.java:69

66 javax.naming.directory.Attribute attr2 = attrs.get("street");
67 if (attr != null) {
68 response.getWriter()

69 .println(

70 "LDAP query results:
"
71 + "Record found with name "
72 + attr.get()

Reflected XSS (Java)CWE-78

Description

The reflected XSS or client type XSS attack is possible.
Cross-site scripting is one of the most common types of attacks on web applications. XSS attacks take seventh
place in the “OWASP Top 10 2017” list of ten most significant vulnerabilities in web applications.
The main phase of any XSS attack is an imperceptible for the victim execution of a malicious code in the context
of the vulnerable application. For this purpose, the functionality of the client application (browser) is used that
allows to automatically execute scripts embedded in web page code. In most cases, these malicious scripts are
implemented in JavaScript.
Consequences of an XSS attack vary from violations of application functionality to complete loss of user data
confidentiality. The malicious code during the XSS attack can steal user HTTP-cookie, which gives an attacker
the ability to make requests to the server on behalf of the user.
OWASP suggests the following classification of XSS attacks:

 • Server type XSS occurs when data from an untrusted source is included in the response returned by the
server. The source of such data can be both user input and server database (where it had been previously
injected by an attacker who exploited vulnerabilities in the server-side application).
 • Client type XSS occurs when the raw data from the user input contains code that changes the Document
Object Model (DOM) of the web page received from the server. The source of such data can be both the DOM
and the data received from the server (e.g., in response to an AJAX request).
Typical server type attack scenario:

23

Report BenchmarkJava-master.zip

 1. Unvalidated data, usually from a HTTP request, gets into the server part of the application.
 2. The server dynamically generates a web page that contains the unvalidated data.
 3. In the process of generating a web page, server does not prevent the inclusion of an executable code that
can be executed in the client (browser), such as JavaScript code language, HTML-tags, HTML-attributes, Flash,
ActiveX, etc., in the page code.
 4. The victim’s client application displays the web page that contains the malicious code injected via data
from an untrusted source.
 5. Since malicious code is injected in the web page coming from the known server, the client part of the
application (browser) executes it with the rights set for the application.
 6. This violates the same-origin policy, according to which the code from the one source must not get an
access to resources from another source.
Client type attacks are executed in a similar way with the only difference that the malicious code is injected
during the phase of the client application work with the document object model received from the server.

Example

In the following example, the JSP code reads the valueof the eid parameter
(employee ID) and displays it on the page:
<% String eid = request.getParameter("eid"); %>
Employee ID: <%= eid %>
If the user follows the attacker’s link containing malicious script as the value of eid,
this script will be executed in the browser, in particular, sending cookies, session IDs
or other victim’s valuable information to the attacker.
Example for Scala application based on the Play framework: the raw method of the
play.templates.JavaExtensions class returns a text without template escaping.

Recommendations

 • Implement a validation mechanism. Whitelist is more secure but less flexible than the
blacklist. The blacklist must at least include the characters “&”, “<”, “>”, and quotation
marks.
 • Many web application servers provide their own mechanisms of protection against XSS,
but they may not be considered sufficient. There is no guarantee that the application will
run in conjunction with the server that updates these mechanisms timely and completely.

Links

 1. OWASP: Cross-site Scripting (XSS)
 2. CWE-79: Improper Neutralization of Input During Web Page Generation
 3. Types of Cross-Site Scripting - OWASP
 4. OWASP: XSS Prevention Cheat Sheet
 5. OWASP Top 10-2017 A7-Cross-Site Scripting (XSS)

24

https://owasp.org/www-community/attacks/xss/
https://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)

Report BenchmarkJava-master.zip

 6. CWE CATEGORY: OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure
 7. CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)
 8. CWE-81: Improper Neutralization of Script in an Error Message Web Page
 9. CWE-83: Improper Neutralization of Script in Attributes in a Web Page

Vulnerability Entries

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00013.java:
56

Level Critical

Status Confirmed

53
54 response.setHeader("X-XSS-Protection", "0");
55 Object[] obj = {"a", "b"};

56 response.getWriter().format(java.util.Locale.US, param, obj);

57 }
58 }

Trace

HttpServletRequest.getHeaders()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00013.java:45

42 response.setContentType("text/html;charset=UTF-8");
43
44 String param = "";

45 java.util.Enumeration<String> headers = request.getHeaders("Referer");

46
47 if (headers != null && headers.hasMoreElements()) {
48 param = headers.nextElement(); // just grab first element

PrintWriter.format()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00013.java:56

25

https://cwe.mitre.org/data/definitions/1029.html
https://cwe.mitre.org/data/definitions/80.html
https://cwe.mitre.org/data/definitions/81.html
https://cwe.mitre.org/data/definitions/83.html

Report BenchmarkJava-master.zip

53
54 response.setHeader("X-XSS-Protection", "0");
55 Object[] obj = {"a", "b"};

56 response.getWriter().format(java.util.Locale.US, param, obj);

57 }
58 }

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00014.java:
56

Level Critical

Status Confirmed

53
54 response.setHeader("X-XSS-Protection", "0");
55 Object[] obj = {"a", "b"};

56 response.getWriter().format(param, obj);

57 }
58 }

Trace

HttpServletRequest.getHeaders()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00014.java:45

42 response.setContentType("text/html;charset=UTF-8");
43
44 String param = "";

45 java.util.Enumeration<String> headers = request.getHeaders("Referer");

46
47 if (headers != null && headers.hasMoreElements()) {
48 param = headers.nextElement(); // just grab first element

26

Report BenchmarkJava-master.zip

PrintWriter.format()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00014.java:56

53
54 response.setHeader("X-XSS-Protection", "0");
55 Object[] obj = {"a", "b"};

56 response.getWriter().format(param, obj);

57 }
58 }

SQL injection (Java)CWE-120

CWE-862

Description

SQL injection is possible. This can be exploited to bypass the authentication mechanism, access all database
entries, or execute malicious code with application rights.
Client side code injection attacks take the first place in the “OWASP Top 10 2017” web application
vulnerabilities ranking and the seventh place in the “OWASP Mobile Top 10 2014”. ranking. The level of
potential damage from such an attack depends on the user input validation performance and file protection
mechanisms.
SQL Injection occurs when a database query is based on data from an untrusted source (e.g., user input). In the
absence of proper validation an attacker can modify the query to execute malicious SQL query.
The most common variants of SQL injection:

 • Direct addition of malicious code into a string variable, based on which the SQL query is generated.
 • Premature termination of the correct SQL command via the “– ” sequence of characters (interpreted as the
beginning of a comment). The contents of the string after this sequence will be ignored during the execution of
SQL command.
 • Addition of the “;” character (interpreted as the end of the command), and other malicious commands
(request splitting) to the input string variable.
 • Password guessing via the sequential execution of SQL queries.

Example

Let the application substitute the user entered city name to the SQL query. For

27

Report BenchmarkJava-master.zip

example, for the input string “London” we have:
SELECT * FROM Orders WHERE City = 'London'
An attacker can enter the following query:
London'; drop table Orders--
In this case, a query will be built that searches through the table and then deletes the
table:
SELECT * FROM Orders WHERE City = 'London';drop table Orders-- '

Recommendations

 • Do not make assumptions about the type or amount of data entered by a user.
 • Implement a mechanism of validation for data entered by a user.
 • Escape special characters (“;”, “–”, “/*”, “*/”, “‘”; the exact list depends on the
database type).
 • Use stored procedures to validate user input along with the mechanism of parameters
filtering.

Links

 1. OWASP Top 10 2017-A1-Injection
 2. OWASP: SQL Injection
 3. WASC-19: SQL Injection
 4. CAPEC-66: SQL Injection
 5. Understanding SQL Injection – cisco.com
 6. CWE CATEGORY: OWASP Top Ten 2017 Category A1 - Injection
 7. CWE-89

Vulnerability Entries

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00018.java:
59

Level Critical

Status Confirmed

28

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A1-Injection
https://owasp.org/www-community/attacks/SQL_Injection
http://projects.webappsec.org/w/page/13246963/SQL%20Injection
https://capec.mitre.org/data/definitions/66.html
https://web.archive.org/web/20201202040339/https://tools.cisco.com/security/center/resources/sql_injection
https://cwe.mitre.org/data/definitions/1027.html
https://cwe.mitre.org/data/definitions/89.html

Report BenchmarkJava-master.zip

56 try {
57 java.sql.Statement statement =
58 org.owasp.benchmark.helpers.DatabaseHelper.getSqlStatement();

59 int count = statement.executeUpdate(sql);

60 org.owasp.benchmark.helpers.DatabaseHelper.outputUpdateComplete(sql, response);
61 } catch (java.sql.SQLException e) {
62 if (org.owasp.benchmark.helpers.DatabaseHelper.hideSQLErrors) {

Trace

HttpServletRequest.getHeaders()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00018.java:45

42 response.setContentType("text/html;charset=UTF-8");
43
44 String param = "";

45 java.util.Enumeration<String> headers = request.getHeaders("BenchmarkTest00018");

46
47 if (headers != null && headers.hasMoreElements()) {
48 param = headers.nextElement(); // just grab first element

Statement.executeUpdate()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00018.java:59

56 try {
57 java.sql.Statement statement =
58 org.owasp.benchmark.helpers.DatabaseHelper.getSqlStatement();

59 int count = statement.executeUpdate(sql);

60 org.owasp.benchmark.helpers.DatabaseHelper.outputUpdateComplete(sql, response);
61 } catch (java.sql.SQLException e) {
62 if (org.owasp.benchmark.helpers.DatabaseHelper.hideSQLErrors) {

29

Report BenchmarkJava-master.zip

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00027.java:
52

Level Critical

Status Confirmed

49 try {
50 java.sql.Statement statement =
51 org.owasp.benchmark.helpers.DatabaseHelper.getSqlStatement();

52 int count = statement.executeUpdate(sql);

53 org.owasp.benchmark.helpers.DatabaseHelper.outputUpdateComplete(sql, response);
54 } catch (java.sql.SQLException e) {
55 if (org.owasp.benchmark.helpers.DatabaseHelper.hideSQLErrors) {

Trace

HttpServletRequest.getParameter()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00027.java:44

41 // some code
42 response.setContentType("text/html;charset=UTF-8");
43

44 String param = request.getParameter("BenchmarkTest00027");

45 if (param == null) param = "";
46
47 String sql = "INSERT INTO users (username, password) VALUES ('foo','" + param + "')";

Statement.executeUpdate()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00027.java:52

49 try {
50 java.sql.Statement statement =
51 org.owasp.benchmark.helpers.DatabaseHelper.getSqlStatement();

52 int count = statement.executeUpdate(sql);

30

Report BenchmarkJava-master.zip

53 org.owasp.benchmark.helpers.DatabaseHelper.outputUpdateComplete(sql, response);
54 } catch (java.sql.SQLException e) {
55 if (org.owasp.benchmark.helpers.DatabaseHelper.hideSQLErrors) {

Cross-site request forgery (CSRF) (HTML5)CWE-434

Description

Сross-Site Request Forgery (CSRF) is possible.
Cross-Site Request Forgery (CSRF) attacks rank eighth on the OWASP Top 10 2013. CSRF is a type of attack
that occurs when a malicious website, email or blog forces a user’s browser to perform an action on another
site where the user is logged in.
Possible scenario of an attack:
The victim goes to a site created by the attacker, and a request is secretly sent on his behalf to another server
(for example, a payment system server) that performs some kind of malicious operation (e.g., transferring
money to the attacker’s account). In order to carry out this attack, the victim must be authenticated on the
server to which the request is sent and the request must not require any confirmation from the user, which
cannot be ignored or forged by the attacking script.

Example

In the following example, the web application allows administrators to create new
accounts:
<form method="POST" action="/new_user">
 Name of new user: <input type="text" name="username">
 Password for new user: <input type="password" name="user_passwd">
 <input type="submit" name="action" value="Create User">
</form>
An attacker can create a malicious web site that contains the following code:
<form method="POST" action="http://www.example.com/new_user">
 <input type="hidden" name="username" value="hacker">
 <input type="hidden" name="user_passwd" value="hacked">
</form>
<script>
 document.usr_form.submit();
</script>
If the administrator visits a malicious web site during an open session on the
vulnerable site, unbeknown to him/her an account will be created, which an attacker
will use later.

31

Report BenchmarkJava-master.zip

Most browsers with every HTTP request transfer the referer header containing the
address of the web site from which the transition occurs. However, since the attacker
can overwrite the referer contents, this header does not help to counteract CSRF-
attacks.

Recommendations

 • If the application uses cookies, include in each form a secret value that can be
validated on the server to verify the legitimacy of the request. The identifier (token) must
be unique for each request, and not for the session. The token should not be easy to guess;
it needs to be protected as well as the session token, for instance, via TLS.
 • Use the framework provided mechanisms of protection against CSRF.
 • Use additional mechanisms for verifying the request legitimacy, e.g., CAPTCHA, re-
authentication, one-time tokens.
 • Send the session ID not only as a cookie, but also as the value of the hidden field. The
server must verify that these values match. An attacker will not be able to modify the value
of the session identifier due to the same origin policy.
 • Limit the session time. CSRF-attacks are successful only if they are carried out while
the victim’s session on the vulnerable web site is valid. Reducing the session time reduces
the likelihood of CSRF.
The described techniques only protect against CSRF, but not against cross-site scripting
(XSS).

Links

 1. OWASP Top 10 2013-A8-Cross-Site Request Forgery (CSRF)
 2. CWE-352: Cross-Site Request Forgery (CSRF)
 3. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet - OWASP
 4. CWE-1034

Vulnerability Entries

BenchmarkJava-master/src/main/webapp/cmdi-00/BenchmarkTest00006.html:12

Level Medium

Status Confirmed

32

https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://cwe.mitre.org/data/definitions/352.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/1034.html

Report BenchmarkJava-master.zip

9 <title>BenchmarkTest00006</title>
10 </head>
11 <body>

12 <form action="/benchmark/cmdi-00/BenchmarkTest00006" method="POST" id="
FormBenchmarkTest00006" autocomplete="off">

13 <div>
14 <label>Please explain your answer:</label>
15 </div>

BenchmarkJava-master/src/main/webapp/cmdi-00/BenchmarkTest00007.html:12

Level Medium

Status Confirmed

9 <title>BenchmarkTest00007</title>
10 </head>
11 <body>

12 <form action="/benchmark/cmdi-00/BenchmarkTest00007" method="POST" id="
FormBenchmarkTest00007" autocomplete="off">

13 <div>
14 <label>Please explain your answer:</label>
15 </div>

Command injection (Java)CWE-306

CWE-862

CWE-829

Description

Executing commands obtained from data from an untrusted source is insecure.
Injection vulnerabilities take the first place in the “OWASP Top 10 2017” web-application vulnerabilities
ranking. Command injection vulnerabilities are divided into two categories:

 1. An attacker modifies the command itself;

33

Report BenchmarkJava-master.zip

 2. An attacker replaces the value of the environment variables, which implicitly changes the semantics of the
command being executed.
In the given case, the application is prone to the vulnerability of the first type.
A possible attack scenario:

 1. The application receives input data from an untrusted source, for example, user input.
 2. The data obtained is used as a part of the string that defines the command.
 3. Execution of the command gives an attacker the privileges which he did not previously possess.

Example

In the following example, the application executes the script for creating the database
backup. The application takes a parameter that determines the type of backup as an
argument and runs the script with elevated privileges.
String btype = request.getParameter("backuptype");
String cmd = new String("cmd.exe /K
\"c:\\util\\rmanDB.bat "+btype+"&&c:\\utl\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);
The problem here is the absence of validation for the backuptype parameter. Typically
Runtime.exec() does not carry out several commands, but in this case first cmd.exe is
started to execute multiple instructions with a single Runtime.exec() call. As soon as
the command line shell is started, it can perform multiple commands separated by the
“&&” symbols. If an attacker sets the "&& del c:\\dbms*.*" string as a parameter,
the command for removing the specified directory will be run with elevated privileges.
Similar considerations apply to both web applications and mobile applications.

Recommendations

 • Do not allow users to directly control the commands executed by an application. If the
behavior of the application should be dependent on the user input, suggest the user to
choose from a specific list of legitimate commands.
 • If user data is a command argument, the whitelist may be too cumbersome. Blacklist is
also inefficient, as it is difficult to maintain it up to date and comprehensive. In this case, it
is recommended to use the whitelist of characters allowed in the command parameters.
 • An attacker can change the semantics of the command not only by changing it, but also
by affecting its environment. Environment must not be considered a trusted source. The
values of environment variables must also be validated.

Links

 1. OWASP Top 10 2017-A1-Injection

34

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A1-Injection

Report BenchmarkJava-master.zip

 2. OWASP Top 10 2013-A1-Injection
 3. CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)
 4. CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command Injection’)
 5. CWE CATEGORY: OWASP Top Ten 2017 Category A1 - Injection

Vulnerability Entries

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00006.java:
66

Level Medium

Status Confirmed

63
64 ProcessBuilder pb = new ProcessBuilder();
65

66 pb.command(argList);

67
68 try {
69 Process p = pb.start();

Trace

HttpServletRequest.getHeader()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00006.java:46

43
44 String param = "";
45 if (request.getHeader("BenchmarkTest00006") != null) {

46 param = request.getHeader("BenchmarkTest00006");

47 }
48
49 // URL Decode the header value since req.getHeader() doesn't. Unlike req.getParameter().

35

https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/1027.html

Report BenchmarkJava-master.zip

ProcessBuilder.command()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00006.java:66

63
64 ProcessBuilder pb = new ProcessBuilder();
65

66 pb.command(argList);

67
68 try {
69 Process p = pb.start();

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00007.java:
61

Level Medium

Status Confirmed

58 Runtime r = Runtime.getRuntime();
59
60 try {

61 Process p = r.exec(args, argsEnv);

62 org.owasp.benchmark.helpers.Utils.printOSCommandResults(p, response);
63 } catch (IOException e) {
64 System.out.println("Problem executing cmdi - TestCase");

Trace

HttpServletRequest.getHeader()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00007.java:46

43
44 String param = "";
45 if (request.getHeader("BenchmarkTest00007") != null) {

36

Report BenchmarkJava-master.zip

46 param = request.getHeader("BenchmarkTest00007");

47 }
48
49 // URL Decode the header value since req.getHeader() doesn't. Unlike req.getParameter().

Runtime.exec()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00007.java:61

58 Runtime r = Runtime.getRuntime();
59
60 try {

61 Process p = r.exec(args, argsEnv);

62 org.owasp.benchmark.helpers.Utils.printOSCommandResults(p, response);
63 } catch (IOException e) {
64 System.out.println("Problem executing cmdi - TestCase");

Hardcoded password (Java)CWE-676

Description

Password is hardcoded. This may lead to an application data compromise.
Eliminating security risks related to hardcoded passwords is extremely difficult. These passwords are at least
accessible to every developer of the application. Moreover, after the application is installed, removing password
from its code is possible only via an update. Constant strings are easily extracted from the compiled application
by decompilers. Therefore, an attacker does not necessarily need to have an access to the source code to know
the parameters of the special account. If these parameters become known to an attacker, system
administrators will be forced either to neglect the safety, or to restrict the access to the application.

Example

In the following example, the connection to the database is established with a
hardcoded password:
DriverManager.getConnection(url, "user", "pass");
In case of a mobile application, security threat is even higher, considering the risk of
the device loss.
In the following example, the mobile application uses hardcoded parameters to

37

Report BenchmarkJava-master.zip

display the protected page using WebView:
webview.setWebViewClient(new WebViewClient() {
 public void onReceivedHttpAuthRequest(WebView view, HttpAuthHandler handler,
String host, String realm) {
 handler.proceed("user", "pass");
 }
});
As in the previous example, the code will work, but anyone who has access to the
application source code or bytecode will be able to learn the values of username and
password for the special account.

Recommendations

 • Store not passwords but values of cryptographically secure hash function from the
password. Use specialized hash functions designed for this purpose (bcrypt, scrypt). Use
salt obtained from cryptographically secure pseudorandom number generator to resist
attacks which use rainbow tables.
 • If the hardcoded password is used for the initial authorization, provide the special
authentication mode for this purpose in which the user is required to provide his/her own
unique password.
 • Store authentication information in an encrypted form in a separate configuration file or
in a database. Secure the encryption key. If encryption is not possible, limit the access to
the repository as much as possible.
 • For secure password storage on the platforms using the SQLite database (including
Android), use the SQLCipher extension.

Links

 1. Use of hard-coded password
 2. CWE-259: Use of Hard-coded Password
 3. OWASP Top 10 2017-A2-Broken Authentication
 4. OWASP Top 10 2017-A3-Sensitive Data Exposure
 5. OWASP Top 10 2013-A5-Security Misconfiguration
 6. OWASP Top 10 2013-A6-Sensitive Data Exposure
 7. Handling passwords used for auth in source code - stackoverflow.com
 8. How to securely hash passwords? - security.stackexchange.com
 9. CWE-798: Use of Hard-coded Credentials
 10. CWE CATEGORY: OWASP Top Ten 2017 Category A2 - Broken Authentication
 11. CWE CATEGORY: OWASP Top Ten 2017 Category A6 - Security Misconfiguration

38

https://owasp.org/www-community/vulnerabilities/Use_of_hard-coded_password
https://cwe.mitre.org/data/definitions/259.html
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A2-Broken_Authentication
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A3-Sensitive_Data_Exposure
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://stackoverflow.com/questions/12937641/handling-passwords-used-for-auth-in-source-code
https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/1028.html
https://cwe.mitre.org/data/definitions/1032.html

Report BenchmarkJava-master.zip

Vulnerability Entries

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/helpers/HibernateUtil.java:154

Level Medium

Status Confirmed

151 tx = session.beginTransaction();
152 User user = new User();
153 user.setName("User1");

154 user.setPassword("P455w0rd");

155 user.setHobbyId(2);
156 session.save(user);
157 session.flush();

BenchmarkJava-master/src/main/java/org/owasp/benchmark/helpers/LDAPServer.
java:110

Level Medium

Status Confirmed

107 LDAPManager emd = new LDAPManager();
108 LDAPPerson ldapP = new LDAPPerson();
109 ldapP.setName("foo");

110 ldapP.setPassword("MrFooPa$$word");

111 ldapP.setAddress("AddressForFoo #345");
112
113 emd.insert(ldapP);

Missing authorization (Java)CWE-250

CWE-131

39

Report BenchmarkJava-master.zip

Description

The software does not perform an authorization check when an actor attempts to access a resource or perform
an action.
When access control checks are not applied, this can lead to a wide range of problems, including information
exposures, denial of service, and arbitrary code execution.
Missing authorization weaknesses may arise when a single-user application is ported to a multi-user
environment.

Example

In the following example, the application automatically allows the user to send a
request without asking him for a username and password:
Connection conn = DriverManager.getConnection(url, "user", "password123");
Statement statement = conn.createStatement();
String sql = "SELECT * FROM developers";
resultSet = statement.executeQuery(sql);

Recommendations

 • It is recommended to implement an access control mechanism everywhere to
guarantee authorized user access to the requested object.

Links

 1. CWE-862: Missing Authorization

Vulnerability Entries

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/helpers/HibernateUtil.java:74

Level Medium

Status Confirmed

71 Class.forName("org.hsqldb.jdbcDriver");
72 // System.out.println("Driver Loaded.");
73 String url = "jdbc:hsqldb:benchmarkDataBase;sql.enforce_size=false";

74 conn = DriverManager.getConnection(url, "sa", "");

40

https://cwe.mitre.org/data/definitions/862.html

Report BenchmarkJava-master.zip

75 // System.out.println("Got Connection.");
76 st = conn.createStatement();
77 } catch (SQLException | ClassNotFoundException e) {

Path manipulation (Java)CWE-311

CWE-807

Description

Using data from an untrusted source when working with the file system may give an attacker access to
important system files.
By manipulating variables that reference files with “dot-dot-slash (../)” sequences and its variations or by using
absolute file paths, it may be possible to access arbitrary files and directories stored on file system including
application source code or configuration and critical system files.

Example

In the following example, the application uses the value of the HTTP request
parameter to specify the name of the file that is to be deleted. An attacker can set the
string ../../tomcat/conf/server.xml as a parameter and thus delete the configuration
file.
String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);
rFile.delete()

Recommendations

 • Create a white list of acceptable names from which the user can choose. Do not use
values entered by the user without validation.

Links

 1. OWASP Top 10 2017-A1-Injection
 2. OWASP Top 10 2017-A5-Broken Access Control
 3. OWASP Top 10 2013-A4-Insecure Direct Object References
 4. CWE-73: External Control of File Name or Path
 5. Path Traversal - OWASP
 6. CWE CATEGORY: OWASP Top Ten 2017 Category A1 - Injection
 7. CWE-23
 8. CWE-36

41

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A1-Injection
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A5-Broken_Access_Control
https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/data/definitions/73.html
https://owasp.org/www-community/attacks/Path_Traversal
https://cwe.mitre.org/data/definitions/1027.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/36.html

Report BenchmarkJava-master.zip

 9. Restrict path access to prevent path traversal
 10. A01:2021 - Broken Access Control
 11. CWE-35: Path Traversal
 12. A03:2021 - Injection

Vulnerability Entries

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00001.java:
71

Level Medium

Status Confirmed

68
69 try {
70 fileName = org.owasp.benchmark.helpers.Utils.TESTFILES_DIR + param;

71 fis = new java.io.FileInputStream(new java.io.File(fileName));

72 byte[] b = new byte[1000];
73 int size = fis.read(b);
74 response.getWriter()

Trace

HttpServletRequest.getCookies()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00001.java:54

51 // some code
52 response.setContentType("text/html;charset=UTF-8");
53

54 javax.servlet.http.Cookie[] theCookies = request.getCookies();

55
56 String param = "noCookieValueSupplied";
57 if (theCookies != null) {

42

https://security.openstack.org/guidelines/dg_using-file-paths.html
https://cwe.mitre.org/data/definitions/1345.html
https://cwe.mitre.org/data/definitions/35.html
https://cwe.mitre.org/data/definitions/1347.html

Report BenchmarkJava-master.zip

new File()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00001.java:71

68
69 try {
70 fileName = org.owasp.benchmark.helpers.Utils.TESTFILES_DIR + param;

71 fis = new java.io.FileInputStream(new java.io.File(fileName));

72 byte[] b = new byte[1000];
73 int size = fis.read(b);
74 response.getWriter()

BenchmarkJava-
master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00002.java:
72

Level Medium

Status Confirmed

69 try {
70 fileName = org.owasp.benchmark.helpers.Utils.TESTFILES_DIR + param;
71

72 fos = new java.io.FileOutputStream(fileName, false);

73 response.getWriter()
74 .println(
75 "Now ready to write to file: "

Trace

HttpServletRequest.getCookies()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00002.java:54

51 // some code
52 response.setContentType("text/html;charset=UTF-8");
53

43

Report BenchmarkJava-master.zip

54 javax.servlet.http.Cookie[] theCookies = request.getCookies();

55
56 String param = "noCookieValueSupplied";
57 if (theCookies != null) {

new FileOutputStream()

BenchmarkJava-master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00002.java:72

69 try {
70 fileName = org.owasp.benchmark.helpers.Utils.TESTFILES_DIR + param;
71

72 fos = new java.io.FileOutputStream(fileName, false);

73 response.getWriter()
74 .println(
75 "Now ready to write to file: "

44

Report BenchmarkJava-master.zip

03
About
CWE/SANS
Top 25 2023

The report contains vulnerability classification
by CWE/SANS Top 25 2023. CWE/SANS Top
25 2023 is a joint project by SANS Institute,
MITRE, and security specialists throughout the
globe. This framework details 25 major errors
leading to serious vulnerabilities in software,
alongside remediation advice.

Note that some vulnerabilities may belong to the number of categories or to none at all.
To see the full list of vulnerabilities, choose the By severity classification method.

CWE-787

Out-of-bounds Write
The software writes data past the boundaries of
the intended buffer. This can result in corruption
of data, a crash, or malicious code execution.

CWE-79

Improper Neutralization of Input During
Web Page Generation (Cross-site
Scripting)
The software does not neutralize, or incorrectly
neutralizes user-controllable input before it is
placed in output that is used as a web page that
is served to other users.

CWE-89

Improper Neutralization of Special
Elements used in an SQL Command (SQL
Injection)
The software constructs all or part of an SQL
command using externally-influenced input
from an upstream component, but it does not
neutralize or incorrectly neutralizes special
elements that could modify the intended SQL
command when it is sent to a downstream
component.

CWE-416

Use After Free
The use of previously-freed memory can have
any number of adverse consequences, ranging
from the corruption of valid data to the
execution of arbitrary code, depending on the
instantiation and timing of the flaw.

45

Report BenchmarkJava-master.zip

CWE-78

Improper Neutralization of Special
Elements used in an OS Command (OS
Command Injection)
The software constructs all or part of an OS
command using externally-influenced input
from an upstream component, but it does not
neutralize or incorrectly neutralizes special
elements that could modify the intended OS
command when it is sent to a downstream
component.

CWE-20

Improper Input Validation
The product receives input or data, but it does
not validate or incorrectly validates that the
input has the properties that are required to
process the data safely and correctly. When
software does not validate input properly, an
attacker is able to craft the input in a form that is
not expected by the rest of the application. This
will lead to parts of the system receiving
unintended input, which may result in altered
control flow, arbitrary control of a resource, or
arbitrary code execution.

CWE-125

Out-of-bounds Read
The software reads data past the boundaries of
the intended buffer. Typically, this can allow
attackers to read sensitive information from
other memory locations or cause a crash. The
software may modify an index or perform
pointer arithmetic that references a memory
location that is outside of the boundaries of the
buffer. A subsequent read operation then
produces undefined or unexpected results.

CWE-22

Improper Limitation of a Pathname to a
Restricted Directory (Path Traversal)
The software uses external input to construct a
pathname that is intended to identify a file or
directory that is located underneath a restricted
parent directory, but the software does not
properly neutralize special elements within the
pathname that can cause the pathname to
resolve to a location that is outside of the
restricted directory.

CWE-352

Cross-Site Request Forgery (CSRF)
The web application does not, or cannot
sufficiently verify whether a well-formed, valid,
consistent request was intentionally provided by
the user who submitted the request. This
enables an attacker to trick a client into making
an unintentional request to the web server
which will be treated as an authentic request.
This can be done via a URL, image load,
XMLHttpRequest, etc. and can result in
exposure of data or unintended code execution.

CWE-434

Unrestricted Upload of File with
Dangerous Type
The software allows to upload or transfer files of
dangerous types (e.g., .asp or .php) that can be
automatically processed within the product's
environment.

46

Report BenchmarkJava-master.zip

CWE-862

Missing Authorization
The software does not perform an authorization
check when an actor attempts to access a
resource or perform an action. When access
control checks are not applied, users are able to
access data or perform actions that they should
not be allowed to perform. This can lead to a
wide range of problems, including information
exposure, denial of service, and arbitrary code
execution.

CWE-476

NULL Pointer Dereference
A NULL pointer dereference occurs when the
application dereferences a pointer that it
expects to be valid, but is NULL, typically
causing a crash or exit.

CWE-287

Improper Authentication
When an actor claims to have a given identity,
the software does not prove or insufficiently
proves that the claim is correct. This weakness
can lead to the exposure of resources or
functionality to unintended actors, possibly
providing attackers with sensitive information,
or even execute arbitrary code.

CWE-190

Integer Overflow or Wraparound
An integer overflow or wraparound occurs when
an integer value is incremented to a value that is
too large to store in the associated
representation. When this occurs, the value may
wrap to become a very small or negative
number. While this may be intended behavior, it
can have security consequences if the wrap is
unexpected. This is especially the case if the
integer overflow can be triggered using user-
supplied inputs.

CWE-502

Deserialization of Untrusted Data
The application deserializes untrusted data
without sufficiently verifying that the resulting
data will be valid.

CWE-77

Improper Neutralization of Special
Elements used in a Command (Command
Injection)
The software constructs all or part of a
command using externally-influenced input
from an upstream component, but it does not
neutralize or incorrectly neutralizes special
elements that could modify the intended
command when it is sent to a downstream
component. If a malicious user injects a
character (such as a semi-colon) that delimits
the end of one command and the beginning of
another, it may be possible to then insert an
entirely new and unrelated command that was

47

Report BenchmarkJava-master.zip

not intended to be executed.

CWE-119

Improper Restriction of Operations within
the Bounds of a Memory Buffer
The software performs operations on a memory
buffer, but it can read from or write to a memory
location that is outside of the intended boundary
of the buffer that may be associated with other
variables, data structures, or internal program
data. As a result, an attacker may be able to
execute arbitrary code, alter the intended
control flow, read sensitive information, or
cause the system to crash.

CWE-798

Use of Hard-coded Credentials
The software contains hard-coded credentials,
such as a password or cryptographic key. Hard-
coded credentials typically create a significant
hole that allows an attacker to bypass the
authentication that has been configured by the
software administrator.

CWE-918

Server-Side Request Forgery (SSRF)
The web server receives a URL or similar request
from an upstream component and retrieves the
contents of this URL, but it does not sufficiently
ensure that the request is being sent to the
expected destination. By providing URLs to
unexpected hosts or ports, attackers can make
it appear that the server is sending the request,
possibly bypassing access controls such as
firewalls that prevent the attackers from
accessing the URLs directly.

CWE-306

Missing Authentication for Critical
Function
The software does not perform any
authentication for functionality that requires a
provable user identity or consumes a significant
amount of resources. Exposing critical
functionality essentially provides an attacker
with the privilege level of that functionality.

CWE-362

Concurrent Execution using Shared
Resource with Improper Synchronization
(Race Condition)
The product contains a code sequence that can
run concurrently with other code, and the code
sequence requires temporary, exclusive access
to a shared resource, but a timing window exists
in which the shared resource can be modified by
another code sequence. This can have security

CWE-269

Improper Privilege Management
The product does not properly assign, modify,
track, or check privileges for an actor, creating
an unintended sphere of control for that actor.

48

Report BenchmarkJava-master.zip

implications when the expected synchronization
is in security-critical code, such as recording
whether a user is authenticated or modifying
important state information that should not be
influenced by an outsider.

CWE-94

Improper Control of Generation of Code
(Code Injection)
The product constructs all or part of a code
segment using externally-influenced input from
an upstream component, but it does not
neutralize or incorrectly neutralizes special
elements that could modify the syntax or
behavior of the intended code segment. When a
product allows a user's input to contain code
syntax, it might be possible for an attacker to
craft the code in such a way that it will alter the
intended control flow of the product. Such an
alteration could lead to arbitrary code execution.

CWE-863

Incorrect Authorization
The software performs an authorization check
when an actor attempts to access a resource or
perform an action, but it does not correctly
perform the check. This allows attackers to
bypass intended access restrictions.

CWE-276

Incorrect Default Permissions
During installation, installed file permissions are
set to allow anyone to modify those files.

49

	1 Project Information
	Dynamics by vulnerabilities
	Scan History

	2 Scan Information 1/1 2024-09-04 09:42:42
	Scan Statistics
	Language Statistics
	Classification by CWE/SANS Top 25 2023
	Vulnerability List
	Analysis Results

	3 About CWE/SANS Top 25 2023

